One-step synthesis and upconversion luminescence property

of hierarchical In₂O₃:Yb³⁺, Er³⁺ nanorod flowers

Yinhua Wang^a, Yongsheng Zhu^{a*}, Xiumei Xu^a, Jinshu Huang^a, Zhiwen Lu^a, and Dongfang Qiu^{a*}

^a College of Physics and Electronic Engineering, College of Chemistry and Charmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.

*Corresponding author: <u>vongshengzhu0001@163.com</u>, qiudf2008@163.com

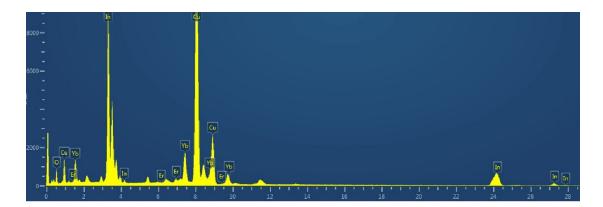


Fig. S1 Energy Dispersive X-ray spectra of as-prepared In_2O_3 : (10 mol%)Yb³⁺, (2 mol%) Er³⁺ NRFs.

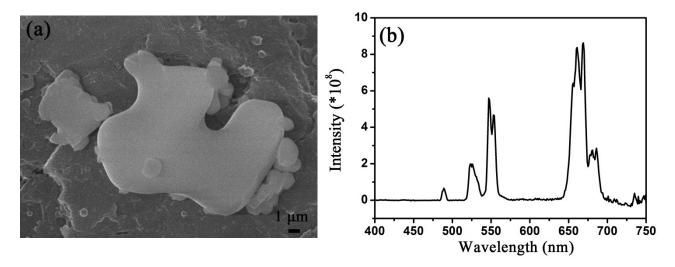


Fig. S2 (a) The SEM image of the In_2O_3 : Yb³⁺, Er³⁺ power; (b) the UCL spectra of In_2O_3 : Yb³⁺, Er³⁺ power.

For preparing co-doped In_2O_3 powder, $In(NO_3)_3 \cdot 4.5H_2O$, $Yb(NO_3)_3 \cdot 6H_2O$ and $Er(NO_3)_3 \cdot 6H_2O$ were used as starting materials. The In_2O_3 : (10 mol%)Yb³⁺, (1 mol%) Er³⁺ power was prepared by the sol-gel method. In the preparation of the In_2O_3 :Yb³⁺, Er³⁺ precursor sol, stoichiometric amounts of $In(NO_3)_3 \cdot 4.5H_2O$, Yb(NO₃)₃ $\cdot 6H_2O$, $Er(NO_3)_3 \cdot 6H_2O$ were dissolved in 10 ml water solution. The mixture was stirred for 3 hours, forming a transparent solution. The sample was sealed in crucibles and loaded into a laboratory box furnace. The furnace was heated to 500 °C for 3 h and then cooled to room temperature naturally.