Supporting Information

Alkali metal impact on structural and phonon properties of Er³⁺ and Tm³⁺ codoped MY(WO₄)₂ (M = Li, Na, K) nanocrystals

Paulina Ropuszyńska-Robak, Paweł E. Tomaszewski, Leszek Kępiński, Lucyna Macalik

Figure S1. The selected diffraction patterns of (a) $LiY(WO_4)_2$:Er,Tm, (b) $NaY(WO_4)_2$:Er,Tm and (c) $KY(WO_4)_2$:Er,Tm nanopowders obtained by the Pechini method calcined at various temperatures (solid line) and by the hydrothermal method (broken line). Diffraction pattern of the standard monoclinic [E. Gallucci, C. Goutaudier, M.T. Cohen-Addad, B.F. Mentzen, T. Hansen, J. Alloys Compd. 306 (2000) 227] and tetragonal [Y. He, G. Wang, Z. Luo, Chin. Phys. Lett. 10 (1993) 667] phases are added for comparison.

Figure S2. Final Rietveld plot for the sample of $LiY(WO_4)_2$:Er,Tm calcined at 600°C. The circles are the experimental values; the continuous lines stand for the calculated pattern. Vertical bars correspond to the position of Bragg peaks of tetragonal structure (upper line), monoclinic

phase (middle line) of $LiY(WO_4)_2$ and of Li_2WO_4 (bottom line). The bottom curve represents the difference between experimental and calculated diffraction patterns.

Figure S3 Lattice parameters vs. calcination temperature for (a) monoclinic and (b) tetragonal phase.

Figure S4. Lattice parameter c of Li₂WO₄ nanocrystals vs calcination temperature.

Figure S5. Histograms of particle size distribution of (a) $LiY(WO_4)_2$:Er,Tm, (b) $NaY(WO_4)_2$:Er,Tm and (c) $KY(WO_4)_2$:Er,Tm nanopowders. The fitting curves represent double-peak LogNormal approximation.

Figure S6. Lattice parameters of the main phase of KY(WO₄)₂:Er,Tm nanocrystals (from Pechini synthesis) vs. calcination temperature.

Li					Na					Κ				Assignment
600 C	650 C	700 C	750 C	850 C	600 C	650 C	700 C	750 C	850 C	600°C	700°C	750°C	850°C	
942sh	948sh	946sh	947sh							974m 949m				unidentified v(W-O)
921m 901m	921m	919m	918m	925sh	932w	933w	931w	931w	932w	927w 889s	927m 892s	927m 893s	926m 890m	v(W-O) v(WOW)
892sh	892m	891s	888vs 851sh	858sh	815s	817s	8/10vs	8/10vs	815vs	858vs 849vs	8/15s	8/3s	842s	v(WOW) v(W-O)
833vs,b	830vs,b	836vs,b	827s	829vs,b	790vs	789vs	799s	797s	801vs	700 1	830sh	830sh	0425	v(W-O) v(W-O)
/61m,b	770m,b	760sh		/9/sh						780w,b	779s 748m	778s 748m	777m 749m	v(WOOW) v(WOOW)
709m	711m	709s	708vs	716s	720m	719m	722m	721m	721m	729m 708m				v(W-O) v(W-O)
616vs b	599s h	602s b	599vs b							685m 641m	639vs,b	636vs,b	635vs,b	v(WOOW) v(WOOW)
532w	531w	525m	515m 407sh	487sh						610m	485m	484m	484m	v(WOOW) v(WOOW)
442m	449m	445m	497sh 445m	453m	450	450	4 5 1	451	451	445m	444m	443m	443m	$\delta(WOOW)$
391w		394sh	391sh	413W	452W	452W	451W	451W	451W	415m 401m	431sh 401m,b	431sh 400m,b	431sh 398m,b	δ(WOOW)
348m,b	346s,b	345s,b	350s,b							370sh 357m	356m 326sh	355m 326sh	355m 326sh	δ(WOW) and
				326s.b	328m.b	330m.b	332m.b	329m.b	328m.b	332w 315w	317m 293sh	317m 293sh	317m 293sh	δ(W-O) δ(W-O)
303m 266sh	305s	307s 267sh	301m 266sh	291s,b	289m,b	290m,b	290m,b	290m,b	285m,b	286w	285m	285m	285m	$\delta(W-O)$ $\delta(WOOW)$
200511	252	20751	200511							253m	247m	246m	246m	lattice modes
250w 231sh	252m	252m	249m	208m,b						235m 197w	227w 216w	227w 215w	226w 215w	lattice modes lattice modes
197w 155w	200m 158w	200w 154w	151w		197w	197w	197w	194w	202w		169m 156m	169m 156m	169m 155m	T'(M ⁺ /Ln ³⁺) lattice modes
122w 116sh	128w	128w									124w 118w	124w 118w	124w 119w	lattice modes T'(WO ₆)
													/ //	(0)

Table S1. Wavenumbers of IR bands observed for the synthesized samples.

(abbreviatons: vs - very strong, s - strong, m - medium, w - weak, vw - very weak, sh - shoulder, b - broad)