Supplementary Information

Insights into the ligand effects of rhodium catalysts toward

reductive carbonylation of methanol to ethanol

Yingzan Chen, Dianhua Liu*, Yi Yu,

State Key Laboratory of Chemical Engineering, East China University of Science and

Technology, 130 Meilong Road, Shanghai 200237, China

Table of Contents

Table S1 Reaction conditions and reductive carbonylation performances of used Cobased catalysts S2 $CO)(CO)_2(dppm)_2]^+$, [Rh(COCH_3)I_2(dppe)], [Rh(COCH_3)I_2(dppp)] and [Rh(COCH₃)I₂(dppb)] **S**3 Table S3 Selected interatomic distances (Å) and bond angles (deg) for [Rh(COCH₃)I₂(dppp)] in different temperature **S4** Table S4 The catalytic performance of various Rh-based catalyst in the reductive carbonylation of methanol **S**4 Fig. S1 Catalytic cycle for methanol carbonylation and reduction carbonylation catalyzed by Rh(diphosphine)-based catalysts. S5 Fig. S2. Molecular structures of complex [Rh(COCH₃)I₂(dppm)]. **S**5 Characterizing Data **S6** Fig. S3 ¹H and ³¹P NMR spectra of $[Rh_2(\mu-I)(\mu-CO)(CO)_2(dppm)_2]^+$ **S**7 Fig. S4 ¹H and ³¹P NMR spectra of [Rh(COCH₃)I₂(dppe)] **S**8 Fig. S5 ¹H and ³¹P NMR spectra of [Rh(COCH₃)I₂(dppp)] **S**9 Fig. S6 ¹H and ³¹P NMR spectra of [Rh(COCH₃)I₂(dppb)] S10 References S11

Table S1

Reaction conditions and reductive carbonylation performances of used Co-based catalysts

reference	S1	S2	S3	S4	S4	S4	S5
catalyst system	Co	Co	Co	Co	Co	Co	Co-Ru
promotor	none	none	I ₂	none	HI	HI	I_2
ligand	none	PBu ₃	n-Bu ₃ P	PPh ₃	none	PPh ₃	PPh ₃
reaction pressure, (MPa)	34	19.6 ^a	13.5 ^a	30	30	30	27
H ₂ /CO molar ratio	0.9	1	2	1	1	1	1.5
temperature, (°C)	190	230	195	200	200	190	170
solvent	none	benzene	1,4-dioxane	none	none	none	toluene
reaction time	2	4.5 ^b	4.33	2	2	2.5	6
methanol conversion	30	37.1	52.2	7.4	69	47	
molar selectivity, (%)							
dimethyl ether	11.3		0.7	٦	-		7
methyl ethyl ether	0	0.9	0.8	2.3	- 6.8	- 2.9	0
diethyl ether	1.0	—			-		13
acetaldehyde	2.0	—	1.3	0		3.2	0
dimethyl acetal	5.2	—	3.7	42	41	13	
methyl acetate	17.4	—	3.4	2.4	20	16	18
ethyl acetate			0.7	5.4	20	16	0
ethanol	37.5	77.6	74.4	1.2	5.9	9.2	58

^a initial pressure. ^b activation time 3.0 h, reaction time 1.5h.

Table S2

	[Rh ₂ (µ-I)(µ-CO)	[Rh(COCH ₃)I ₂	[Rh(COCH ₃)I ₂	[Rh(COCH ₃)I ₂	
	$(CO)_2(dppm)_2]^+$	(dppe)]	(dppp)]	(dppb)]	
empirical formula	$C_{53}H_{44}IO_3P_4Rh_2$	$C_{28}H_{27}I_2OP_2Rh$	$C_{29}H_{29}I_2OP_2Rh$	$C_{30}H_{31}I_2OP_2Rh$	
CCDC Number	1527246	1527365	1527366	1527367	
cryst dimens, mm ³	0.176×0.143	0.165×0.144	0.25×0.2	0.187×0.156	
	×0.112	×0.112	×0.15	×0.112	
temp, K	133(2)	133(2)	130	133(2)	
cryst syst	Triclinic	Triclinic	Monoclinic	Orthorhombic	
space group	P-1	P-1	P 21/n 1	Pna2 ₁	
a, Å	14.3031(12)	9.0991(9)	10.2587(6)	22.8849(16)	
b, Å	18.7654(16)	10.2694(10)	10.1737(6)	9.1204(6)	
c, Å	20.9726(17)	14.8252(14)	27.0921(16)	14.2625(10)	
α, deg	81.030(2)	92.239(2)	90	90	
β, deg	84.861(2)	94.083(2)	95.0890(10)	90	
γ, deg	79.291(2)	99.430(2)	90	90	
V, Å ³	5452.8(8)	1361.3(2)	2816.4(3)	2976.9(4)	
Ζ	4	2	4	4	
fw, amu	1185.48	798.14	812.17	826.20	
calcd density,	1.444	1.947	1.915	1.843	
g/cm ³					
F(000)	2356	768	1568	1600	
final R indices	R1 = 0.0530,	R1=0.0298,	R1=0.0270,	R1 = 0.0251,	
[I>2σ(I)]	wR2 = 0.1060	wR2= 0.0539	wR2=0.0543	wR2 = 0.0438	
R indices	R1 = 0.0932,	R1=0.0425,	R1=0.0341,	R1 = 0.0296,	
(all data)	wR2 = 0.1189	wR2 = 0.0580	wR2=0.0567	wR2 = 0.0455	
GOF	0.894	0.984	1.045	1.026	
θ,deg	25.242	25.242	25.242	25.242	
scan width, Å	0.71073	0.71073	0.71073	0.71073	
index ranges	-17<=h<=16,	-8<=h<=11,	-11<=h<=14,	-25<=h<=28,	
	-22<=k<=21,	-12<=k<=12,	-14<=k<=14,	-11<=k<=10,	
	-25<=l<=25	-18<=l<=18	-38<=l<=33	-17<=1<=14	

Crystallographic Data for the X-ray Diffraction Analysis of $[Rh_2(\mu-I)(\mu-CO)(CO)_2(dppm)_2]^+$, [Rh(COCH₃)I₂(dppe)], [Rh(COCH₃)I₂(dppp)] and [Rh(COCH₃)I₂(dppb)]

Table S3

	[Rh(dppp)(COCH ₃)I ₂]			
CCDC Number	1014689	1304156		
Temp, K	110	295		
Solvent	methylene chloride	methanol		
P1-Rh-P2, deg	90.96(3)	90.49(5)		
Rh-C(O)-C(H3), deg	112.7(2)	113.1(4)		
I1-Rh-I2, deg	88.696(11)	89.15(2)		
Rh-C(O), Å	1.979(3)	1.981(6)		
Rh-I1, Å	2.6975(3)	2.6768(5)		
Rh-I2, Å	2.6975(3)	2.7263(5)		
Rh-P1, Å	2.2863(5)	2.276(1)		
Rh-P2, Å	2.2863(5)	2.299(1)		
Ref	s6	s7		

Selected interatomic distances (Å) and bond angles (deg) for $[Rh(dppp)(COCH_3)I_2]$ in different temperature.

Table S4

The catalytic performance of various Rh-based catalyst in the reductive carbonylation of methanol. Results are expressed as mean \pm standard error ^a.

Catalyst Composition	Carbonylates product distribution (mol%) ^b					
	EtOH	MeOEt	Et ₂ O	DMAc EtOAc	MeOAc	АсОН
Rh-based catalyst	15.6±0.3	8.0±0.1	0.0±0	1.1±0.1 2.5±0.1	72.3±1.1	0.5±0.1
Rh(dppm)-based catalyst	22.7±0.6	0.0 ± 0	0.0 ± 0	2.6±0.1 4.7±0.2	63.5±1.1	6.5±0.2
Rh(dppe)-based catalyst	39.6±1.1	12.1±0.3	0.7 ± 0.1	1.6±0.1 4.3±0.1	41.7±1.1	0.0 ± 0
Rh(dppp)-based catalyst	59.0±1.1	15.9±0.3	1.2±0.1	2.3±0.1 3.4±0.1	17.7±0.6	0.5±0.1
Rh(dppb)-based catalyst	4.3±0.1	4.9±0.2	0.0 ± 0	1.3±0.1 1.9±0.1	87.6±1.1	0.0 ± 0

^a Error was calculated from three experiments.

^b The product distribution excluded dimethyl ether because it was formed from the reaction between methanol and methyl iodide ^{s8}. EtOH = ethanol, MeOEt = ethyl methyl ether, Et₂O = diethyl ether, DMAc = dimethyl acetal, EtOAc = ethyl acetate, MeOAc = methyl acetate, AcOH = acetic acid.

Fig. S1 Catalytic cycle for methanol carbonylation and reduction carbonylation catalyzed by Rh(diphosphine)-based catalysts.

Fig. S2. Molecular structures of complex [Rh(COCH₃)I₂(dppm)].

Characterizing Data

[Rh₂(μ-I)(μ-CO)(CO)₂(dppm)₂]⁺ (Rh-dppm complex) ¹H NMR (500MHz, CDCl₃): δ=4.37-4.52 (m, 4H), 7.16 (s, 5H), 7.28-7.32 (m, 7H), 7.40-7.44 (m, 12H), 7.60-7.75 (m, 16H) ppm, ³¹P NMR (202.46MHz, CDCl₃): δ=27.68 (d, J_{Rh-P}=94.55Hz, 4P) ppm. [Rh(COCH₃)I₂(dppe)] (Rh-dppe complex) ¹H NMR (500MHz, CDCl₃): δ=2.15-2.28 (m, 2H), 2.77(s, 3H), 3.08-3.21 (m, 2H), 7.30-7.34 (m, 4H), 7.41-7.48 (m, 6H), 7.50-7.53 (m, 6H), 7.84-7.88 (m, 4H)ppm. ³¹P NMR (202.46MHz, CDCl₃): δ=70.39 (d, J_{Rh-P} =139.3Hz, 2P) ppm.

[Rh(COCH₃)I₂(dppp)] (Rh-dppp complex). ¹H NMR (500MHz, CDCl₃): δ =1.60-1.69 (m, 1H), 2.42-2.50 (m, 3H), 3.06 (s, 3H), 3.08-3.17 (m, 2H), 7.24-7.26(m, 3H), 7.28-7.42 (m, 13H), 7.64-7.68(m, 4H) ppm. ³¹P NMR (202.46MHz, CDCl₃): δ =17. 8 (d, J_{Rh-P} =161.97 Hz, 2P) ppm.

[Rh(COCH₃)I₂(dppb)] (Rh-dppb complex). ¹H NMR (500MHz, CDCl₃): δ=1.12 (s, 2H), 1.58 (s, 2H), 2.41-2.47 (m, 2H), 2.73 (s, 3H), 3.24-3.32 (m, 2H), 7.31-7.34(m, 4H), 7.36-7.39(m, 6H), 7.46-7.54 (m, 6H), 7.66-7.70(t, 4H) ppm. ³¹P NMR (202.46MHz, CDCl₃): δ=31.96 (d, J_{Rh-P}=139.3 Hz, 2P) ppm.

Fig. S3 ¹H and ³¹P NMR spectra of $[Rh_2(\mu-I)(\mu-CO)(CO)_2(dppm)_2]^+$.

Fig. S4 ¹H and ³¹P NMR spectra of [Rh(COCH₃)I₂(dppe)].

Fig. S5 1 H and 31 P NMR spectra of [Rh(COCH₃)I₂(dppp)].

Fig. S6 ¹H and ³¹P NMR spectra of [Rh(COCH₃)I₂(dppb)].

References

- [S1] G. S. Koermer and W. E. Slinkard, Ind. Eng. Chem. Prod. Res. Dev., 1978, 17, 231.
- [S2] N. Isogai and K. Tanaka, J. Organomet. Chem., 1990, 397, 101.
- [S3] P. B. Francoisse and F. C. Thyrion, Ind. Eng. Chem. Prod. Res. Dev., 1983, 22, 542.
- [S4] M. Röper, H. Loevenich and J. Korff, J. Mol. Catal., 1982, 17, 315.
- [S5] G. Doyle, J. Mol. Catal., 1983, 18, 251.
- [S6] B. D. Panthi, S. L. Gipson and A. Franken, Inorg. Chim. Acta, 2015, 425, 176.
- [S7] K. G. Moloy and J. L. Petersen, Organomet., 1995, 14, 2931.
- [S8] M. Fakley and R. Head, Appl. Catal., 1983, 5, 3.