Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A novel strategy to promote the photo-oxidative and reductive ability via constructing bipolar material of Bi₂WO₆/N-SrTiO₃

Huayu Gu^a, Guanjie Xing^b, Huimin Gu^a, Zhanli Chai^a, Xiaojing Wang^{*,a}

^a School of Chemistry and Chemical Engineering, Inner Mongolia University,

Hohhot, Inner Mongolia, 010021, P. R. China

^b School of chemistry, Beijing Normal University, Beijing, 100875, P. R. China

*Corresponding author: Xiaojing Wang

E-mail address: wang_xiao_jing@hotmail.com

Fig. S1 XRD patterns of the samples prepared with the various ratios of Bi_2WO_6/N -SrTiO₃

Fig. S2 The growth process of Bi_2WO_6/N -SrTiO₃.

Fig. S3 FT-IR spectra of the as-prepared photocatalysts

Fig. S4 Kinetic curves of photocatalytic degradation of Cr(VI) fitted from the data of Fig. 8 in the presence of Bi_2WO_6 , N-SrTiO₃ and Bi_2WO_6 /N-SrTiO₃ with various ratio of W:Ti= 5%, 8%, 10%, 15%, 20%, respectively.

Energy of Lowest Unoccupied Molecular Orbital -0.12053Ha -3.280eV

Fig. S5 The energy of HOMO and LUMO for TC according to the calculation results of DMol³ (Materials Studio).

Systems	Catalyst dosage (mg/mL)	[Cr(VI)] (mg/L)	Time (min)	Removal efficiency (%)	Reference
Bi2WO6/NSTO10	0.3	5	20	100	The present work
BN/BiOCI	0.8	10	150	91.7	(Xu et al., 2017) [45]
TiO2-10%rGO	0.67	10	180	98	(Liu et al., 2017) [44]
SPNH-MOSF@SnS2	1	50	90	99.5	(Qu et al., 2017) [43]
ZnO/TiO2	1	20	120	100	(Naimi-Joubani et al., 2015) [42]

Table S1 Comparison with the references for the photocatalytic reduction of Cr(VI) ions under visible light irradiation.

Table S2 Comparison with the references for the photocatalytic degradation of TC under visible light irradiation.

Systems	Catalyst dosage (mg/mL)	TC (mg/L)	Time (min)	Removal efficiency (%)	Reference
Bi2WO6/NSTO10	0.3	20	20	100	The present work
MGO-Ce-TiO2-10%	0.5	25	80	83	(Cao et al., 2016) [46]
AgBr/CSs	1	20	60	79.6	(Huo et al., 2016a) [47]
ZnO/CeO2@HNTs	0.3	20	90	87	(Ye et al., 2016) [48]