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Fig. S1. EDX patterns of CaSO4, MoO2 and MoO2/CaSO4 composites.
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Fig. S2 Zeta potential values of the MoO2/CaSO4 composite over a pH range between 

2.0 and 12.0. 

Fig. S3. XPS survey scan spectra of MoO2/CaSO4 composites, MoO2/CaSO4 

composites after CR adsorption, CR, MoO2/CaSO4 composites after RhB adsorption 

and RhB. 



Eq. S1. Equation for the removal efficiency (Re) of a dye onto an adsorbent. 
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C0 (mg∙L-1) is the initial concentration of a dye solution; Ct (mg∙L-1) is the dye 

concentration at time t. 

Eq. S2. Equation for the adsorption capacity (qe, mg∙g-1) of a dye onto an adsorbent at 

equilibrium. 
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Ce (mg∙L-1) is the equilibrium concentration of a dye solution; m (g) is the mass of an 

adsorbent; and V (L) is the volume of a dye solution. 

Eq. S3. Equation for the adsorption quantity (qt, mg∙g-1) of a dye onto an adsorbent at 

time t. 
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Eq. S4. Equation for the Langmuir model. 
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In this model, qmax (mg∙g-1) and kL (L∙mg-1) are Langmuir isotherm constants 

separately representing the maximum adsorbed quantity and a function associated 

with the adsorption free energy. 

Eq. S5. Equation for the separation factor RL. 
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Eq. S6. Equation for the Freundlich model. 
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In this model, kF ((mg∙g-1)(L∙mg-1)1/n) and n are Freundlich isotherm coefficients, 

which are separately related to the adsorption capability and the adsorption intensity. 

Eq. S7. Equation for the D–R model. 

                                                2lnln εkqq Dme 

In this model, qm (mg∙g-1) and kD (mol2∙kJ-2) are the D–R isotherm constants related to 

the maximum adsorption quantity and the mean adsorption free energy, respectively.

Eq. S8. Equation for the Polanyi potential ε. 
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In this model, R (8.314 J∙mol-1∙K-1) is the molar gas constant, and T is the absolute 

temperature expressed in K. 

Eq. S9. Equation for the mean adsorption free energy. 
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Eq. S10. Equation for the Temkin model. 
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In this model, b (equal to -∆H, kJ∙mol-1) denotes the adsorption heat, and kT (L∙mg-1) 

is the Temkin isotherm constant. 

Eq. S11. Equation for the Gibb’s free energy ∆G0. 
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In this equation, R (8.314 J∙mol-1∙K-1) is the molar gas constant, T is the absolute 

temperature expressed in K, and Kq (L∙g-1) is the distribution coefficient of an 



adsorbent that equals to qe∙Ce
-1. 

Eq. S12. Equation for the lnKq. 
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Eq. S13. Equation for the pseudo-first-order kinetic model. 
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In this model, k1 (min-1) represents the kinetic rate constant of the pseudo-first-order 

adsorption. 

Eq. S14. Equation for the pseudo-second-order kinetic model. 
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In this model, k2 (g∙mg-1·min-1) denotes the rate constant of the pseudo-second-order 

adsorption. 

Eq. S15. Equation for the Elovich kinetic model. 
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In this model, α (mg∙g-1∙min-1) refers to the initial adsorption rate, and β (g∙mg-1) 

represents the Elovich desorption constant. 

Eq. S16. Equation for the intra-particle diffusion model. 
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In this model, kid (mg∙g-1·min-1/2) denotes the kinetic rate constant of the intra-particle 

diffusion at stage i, and Ci is a constant whose value directly affects the boundary 

layer thickness of molecular diffusion. 



Table S1. Chemical composition of FDG gypsum confirmed by XRF analysis. 

Content/ wt.%
Material

Ca S Si Mg Al F Fe K Na Cl P

FGD gypsum 59.78 26.17 4.18 4.03 1.81 1.34 1.29 0.57 0.35 0.34 0.14

Table S2. Chemical composition of FDG gypsum confirmed by EDX analysis. 

Content/ wt.%
Material

O Ca S Mg Si Al Fe

FGD gypsum 55.77 24.43 13.24 3.12 1.68 0.91 0.85

Table S3. Chemical composition of the purified FDG gypsum confirmed by EDX 

analysis. 

Content/ wt.%
Material

O Ca S

The purified FGD gypsum 58.15 22.27 19.58



Table S4. Isotherm parameters of four different models for the adsorption of CR and 

RhB onto MoO2/CaSO4 composites. 

Isotherm 
models/parameters CR RhB

Langmuir
qmax (mg∙g-1) 853.54 86.38 
kL (L∙mg-1) 0.0151 0.1913 

R2 0.9979 0.9912 
RL 0.027-0.143 0.022-0.054 

Freundilich
kF ((mg∙g-1)(L∙mg-1)1/n) 100.33 49.55 

n 3.0252 9.1466 
R2 0.8587 0.8498 

D-L
qm (mg∙g-1) 703.42 70.25 

kD (mol2∙kJ-2) 1.22 x 10-4 2.13 x 10-7 
E (kJ∙mol-1) 0.0433 1.2654 

R2 0.8944 0.7564
Temkin

kT (L∙mg-1) 0.21 646.77 
b (kJ∙mol-1) 0.0144 0.3423 

R2 0.9653 0.8501 



Table S5. An adsorptive capacity comparison of the MoO2/CaSO4 composite with 

other adsorbents. 

Adsorbents qmax (mg∙g-1) References

Activated carbon 6.7 (CR) 
39.22 (RhB) [40, 41]

Jute stick powder 35.7 (CR) 
87.7 (RhB) [42]

Kaolinite 22.99 (CR)
46.08 (RhB) [43, 44]

α-MoO3/polyaniline composite 76.22 (CR) 
36.36 (RhB) [23]

MoO2/CaSO4 composite 853.54 (CR) 
86.38 (RhB) This study

Table S6. Thermodynamic parameters for the adsorption of CR and RhB onto 

MoO2/CaSO4 composites. 

∆G0, kJ∙mol-1 
Samples ∆H0, 

kJ∙mol-1 
∆S0, J∙mol-

1·K-1 20 °C 25 °C 30 °C 35 °C 40 °C
R2 

CR -22.31 -13.02 -18.11 -18.44 -18.33 -18.02 -17.22 0.9221
RhB 40.11 193.25 -16.19 -17.63 -18.64 -19.01 -20.22 0.9755



Table S7. Kinetic parameters of four different models for the adsorption of CR and 

RhB onto MoO2/CaSO4 composites. 

Kinetic 
models/Parameters CR RhB

Pseudo-first-order
qe (exp) (mg∙g-1) 750.63 66.64
qe (cal) (mg∙g-1) 522.60 23.22
k1 (min-1)·10-3 5.20 6.03

R2 0.8875 0.9064
Pseudo-second-order

qe (cal) (mg∙g-1) 746.27 66.85
k2 (g∙mg-1·min-1)·10-4 0.25 9.40

R2 0.9508 0.9992
Elovich

α (mg∙g-1∙min-1) 239.83 46.75
β (g∙mg-1)·10-3 11.08 116.95

R2 0.8007 0.9225
Intra-particle diffusion

k1d (mg∙g-1·min-1/2) 126.93 12.31
C1 0 0

(R1)2 1.0000 1.0000
K2d (mg∙g-1·min-1/2) 18.64 3.77

C2 266.77 20.20
(R2)2 0.8897 0.9124

K3d (mg∙g-1·min-1/2) 6.61 0.53
C3 568.79 53.79

(R3)2 0.9492 0.9784


