Facile synthesis of Pt nanoparticles supported on anatase TiO₂ nanotubes with good photo-electrocatalysis performance for methanol

Jianbo Zhang^{a,b,c,#}, Nan Su^{a,b,c,#}, Xiulan Hu^{a,b,c,*}, Faquan Zhu^{a,b,c}, Yawei Yu^{a,b,c}, Hui

Yang^{a,b,c}

^a College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-

Fan Road No. 5, 210009, Nanjing, Jiangsu, China

^b The Synergetic Innovation Center for Advanced Materials, Xin-Mo-Fan Road No. 5,

210009, Nanjing, Jiangsu, China

^c Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM),

Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu, China

* Correspondence information: Xiulan Hu, College of Materials Science and

Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing,

Jiangsu, China, whoxiulan@163.com, +86 152 4022 7230

[#] Nan Su and Jianbo Zhang are co-first authors.

Fig. S1. Schematic illustration of two-step anodization method to prepare TiO_2 nanotubes (a); Schematic illustration of a solution plasma sputtering technique for the preparation of Pt nanoparticles (b).

Plasma

H₂O

Pt

Pt

Fig. S2. XRD patterns of two Ti foil which directly obtained after first-step anodization (a) and obtained after annealing process (b).

Fig. S3. (a) Typical TEM image of as-prepared TNTs. High-resolution TEM (HR-TEM) image of the TNTs inner part (b) and edge part (c). (d) TEM image of a broken tip of a TNT. The insets of (b) and (c) are the high magnification image and corresponding SAED analysis, respectively.

Fig. S4. (a) XPS spectra of the wide surveys for the Pt/C and Pt/TNTs/C composites; (b) Pt 4f for the Pt/C and Pt/TNTs/C; (c) Ti 2p for the Pt/TNTs/C.