Electronic supplementary information for

Chemical redox modulated switch-on fluorescence of carbon dots for probing alkaline phosphatase and its application in immunoassay

Pei Song, Qian Liu, Ying Zhang, Wei Liu, Meng Meng, Yongmei Yin*, Rimo Xi*

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key

Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China

*Corresponding Author:

Tel: +86-(22)-23506290; Fax: +86-(22)-23507760;

Yongmei Yin: E-mail: yinyongmei@nankai.edu.cn

Rimo Xi: E-mail: xirimo@nankai.edu.cn

Contents:

- 1. Fig. S1 Survey (A), high-resolution C1s (B), N1s (C), and O1s (D) XPS spectra of CDs.
- 2. Fig. S2 FT-IR spectrum of the as-prepared CDs.
- 3. **Fig. S3** Fluorescent emission spectra of the CDs at different excitation wavelengths ranging from 290 nm to 380 nm with increments of 10 nm.
- Fig. S4 Fluorescence response of CDs in the presence of different metal ions (A) and small compounds (B). (The concentration of metal ions and compounds were 100 μM)
- 5. **Table S1** Fluorescence lifetimes obtained with three-exponential fit of the fluorescence decay curves of the CDs alone, CDs/Fe(III), and CDs/Fe(III)/AA, respectively.
- 6. Fig. S5 (A) Fluorescence spectra of CDs in the presence of 300 μ M Fe(III) and different concentration of AA from 0 to 600 μ M. (B) Relationship between fluorescence intensity and the concentration of AA.
- Fig. S6 (A) The changes of fluorescence spectra of CDs in the presence of different composition: (a) mere CDs ; (b) CDs + Fe(III); (c) CDs + Fe(III) + AAP; (d) CDs + Fe(III) + AAP + ALP. (B) The change of fluorescence spectra of CDs in the presence of Fe(III) and ALP.
- 8. Fig. S7 Optimization of the experimental conditions for sensing ALP.
- 9. Table S2 Comparison of other CDs-based sensors for the determination of ALP.
- 10. Table S3 Determination of ALP in human serum samples.
- 11. **Fig. S8** Selectivity of the fluorescence immunoassay to human IgG (500 ng/mL) compared with other interfering proteins at the concentration of 500 ng/mL.

Fig. S1 Survey (A), high-resolution C 1s (B), N 1s (C), and O 1s (D) XPS spectra of CDs.

Fig. S2 FT-IR spectrum of the as-prepared CDs.

Fig. S3 Fluorescent emission spectra of the CDs at different excitation wavelengths ranging from 290 nm to 380nm with increments of 10 nm.

Fig. S4 Fluorescence response of CDs in the presence of different metal ions (A) and small compounds (B). (The concentration of metal ions and compounds were 100μ M)

•						•	
Samples	Lifetimes (s)			D1	D2	D2	- (7)
	$ au_1$	$ au_2$	$ au_3$	DI	D2	D3	$\tau_{avg}(S)$
CD	9.49E-10	4.65E-09	1.27E-08	28.63	42.48	28.90	9.48E-09
CD/Fe(III)	1.09E-09	4.86E-09	1.24E-08	21.37	42.39	36.24	9.76E-09
CD/Fe(III)/AA	1.26E-09	5.02E-09	1.29E-08	26.67	43.12	30.20	9.62E-09

Table S1 Fluorescence lifetimes obtained with three-exponential fit of the fluorescence decay curves of the CDs alone, CDs/Fe(III), and CDs/Fe(III)/AA, respectively.

Note: The fluorescence lifetimes of the CDs under different conditions were measured. The fluorescence decays could be fit to the three-exponential Equation (1):

 $f(\tau) = A + B_1 e^{\wedge}(\text{Error!}) + B_2 e^{\wedge}(\text{Error!}) + B_3 e^{\wedge}(\text{Error!})$

Where $\tau_{1,} \tau_{2,} \tau_{3}$ are the three components of the lifetimes, A is the background offset (a fitting parameter), and B1, B2, B3 are pre-exponential functions which are related to the emission intensity. The average lifetime τ_{avg} can be calibrated according to Equation (2):

 $\tau_{avg} = Error!$

Fig. S5 (A) Fluorescence spectra of CDs in the presence of 300 μ M Fe(III) and different concentration of AA from 0 to 600 μ M. (B) Relationship between fluorescence intensity and the concentration of AA.

Fig. S6 (A) The changes of fluorescence spectra of CDs in the presence of different composition: (a) mere CDs ; (b) CDs + Fe(III); (c) CDs + Fe(III) + AAP; (d) CDs + Fe(III) + AAP + ALP. All of the CDs concentrations were 1 μ L/mL; Fe(III) concentrations were 300 μ M in (a), (b) and (c); AAP concentrations were 50 mM in (c) and (d); ALP concentration was 1000 U/L in (d). Excitation: 320 nm and emission: 412 nm. (B) The change of fluorescence spectra of CDs in the presence of Fe(III) and ALP.

Fig. S7 Optimization of the experimental conditions for sensing ALP. (A) $(F_0-F)/F_0$ versus concentrations of Fe(III) from 0 to 600 μ M. (B) The fitting curve between fluorescence intensity of the system and ALP level. Fe(III) of 300 μ M and 50 mM AAP (black curve) or 25 mM AAP (red curve) were present. (C) Incubation time of the mixture containing CDs, Fe(III) (300 μ M), AAP (50 mM) and ALP (1000 U/L). Inset: The variation of relative FL intensity of mixture containing CDs, Fe(III) (300 μ M) at different time interval. (D) The fitting curve between fluorescence intensity of the system and AA level from 5 to 200 μ M at different pH (Fe(III): 300 μ M).

Composition of CDs-based	Linear range	LOD	Reference	
sensors	(U/L)	(U/L)		
β -CD-CDs + p-Nitrophenol	3 4-100	09	(3)	
phosphate disodium	5.1 100	0.9	(3)	
$CDs + Cu^{2+} + PPi$	16.7–782.6	1.1	(4)	
$CDs + Ce^{3+} + ATP$	4.6–383.3	1.4	(5)	
$CDs + Fe^{3+} + AAP$	5–200	0.8	This work	

Table S2 Comparison of other CDs-based sensors for the determination of ALP.

 Table S3 Determination of ALP in human serum samples.

	Equal (II/I)	Recovery	RSD	
Added (U/L)	Found (U/L)	(%, n=3)	(%, n=3)	
30	28.0	93.3	6.3	
60	65.6	109.3	5.0	
100	106.4	106.4	6.0	

Fig. S8 Selectivity of the fluorescence immunoassay to human IgG (500 ng/mL) compared with other interfering proteins at the concentration of 500 ng/mL.

References

- (1) S.H. Cao, N.A. Dong and J.W. Chen, *Phytochem. Analysis*, 2011, 22, 119-123.
- (2) Q.C. Chen, J. Agr. Food Chem., 2004, 52, 4604-4613.
- (3) C. Tang, Z. Qian, Y. Huang, J. Xu, H. Ao, M. Zhao, J. Zhou, J. Chen and H. Feng, *Biosens. Bioelectron.*, 2016, 83, 274-280.
- (4) Z. S. Qian, L. J. Chai, Y. Y. Huang, C. Tang, J. J. Shen, J. R. Chen and H. Feng, *Biosens. Bioelectron.*, 2015, 68, 675-680.
- (5) Z. Qian, L. Chai, C. Tang, Y. Huang, J. Chen and H. Feng, Anal. Chem., 2015, 87, 2966-2973.