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S1. The 14 charge partitioning Lagrangians 

The seven stockholder Lagrangians have the form 
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   (S1) 

(To include enough distinct letters for mathematical symbols, we used characters from the Roman, Greek, 

and Cyrillic alphabets. In this article, i and j are used to represent many different kinds of indices.)  This 

stockholder Lagrangian form is uniquely derivable from the condition that the ratio 
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should be independent of the position r , where    i

A AH r  is some fixed target atomic pseudo-density 

distribution and    i

A Ar  is the assigned atomic electron density distribution subject to constraints (S2)

and (S4) below. Eq. (S1) is the only possible stockholder Lagrangian form satisfying this condition. 

Supplementary information was updated on the 7th Feburary 2025 to correct equation S80

Supplementary Information (SI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2025



RSC Advances  S2 

(Proof: The variational derivative, 
 A Ar




, of constraints (S2) and (S4) yield      i i

Ar  . This 

necessarily produces 
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 independent of position r  only if 
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 of the unconstrained 

part of the Lagrangian is 
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 (optionally times or plus constants that do not change the 

optimized 
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 equal to zero yields the solution, 

   
   

     i i

A

i

rA A

i

A A

r
e e

H r


 , which gives 

        
        

   i i

BA

i i

A A A A

i i

B B B B

r H r
e

r H r

 





 independent of position r .) It is a special 

case of Nalewajski and Parr’s stockholder Lagrangian form.S1 

 Here,    i
r  is a Lagrange multiplier that enforces the constraint 

  
         i i

B B
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where  

  
1 2 3,B B

    (S3) 

 i
A  is a Lagrange multiplier that enforces the constraint 

  
 i
AЧ 0  (S4) 

These 
 i
A  constraints are nil for the first four charge partitioning steps: 

  
 1,2,3,4

AЧ 0  (S5) 

  
 1,2,3,4

A 0   (S6) 

They are potent for the last three charge partitioning steps: 

  
   5,6,7 5,6,7 core

A A AЧ N N      (S7) 
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A A A AN r d r   (S9) 

     i i

A A Aq z N   (S10) 

where zA is the nuclear charge, 
core

AN  is the number of core electrons, NA is the number of electrons, and 

qA is the NAC, all assigned to atom A. 

 The minimum is obtained by setting the variational derivative to zero 

  (i)F 0   (S11) 

This minimum is unique, because the curvature is positive definite: 
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The solution to this minimization problem is 
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The final DDEC6 charge partitions are defined by 

       7

A A A Ar r    (S16) 

 All that remains is to define    i

A AH r  for each of the seven charge partitioning steps. The 1st charge 

partitioning step is defined by 
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The 2nd charge partitioning step is defined by 
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Both the 1st and 2nd charge partitioning steps use a combination of stockholder and localized charge 

partitioning to ensure the computed reference ion charge is similar to the number of electrons in the 

volume dominated by that atom.  

The 3rd charge partitioning step uses: 

        3 2ref

A A A A AH r r ,q   (S19) 

During the third charge partitioning step, the 4th Lagrangian is used to compute the conditioned reference 

ion densities,   cond

A Ar , via reshaping that enforces the constraints 

   
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and to integrate to the number of electrons in the reference ion: 
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These constraints were introduced for theoretical appeal to ensure expected behavior. In tests we 

performed, these constraints had only a small effect on the NACs. They are not present in the DDEC3 

method.   cond

A Ar  is found by minimizing the functional 
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where  I

A Ar  and I

A  are Lagrange multipliers enforcing constraints (S20) and (S21), respectively. 

  I cond

A Ah r  is a convex functional with the unique minimum: 
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 The fourth charge partitioning step uses 

  
     4 cond

A A A AH r r   (S24) 

to construct the 5th Lagrangian. During the 4th, 5th, and 6th charge partitioning steps, the following weighted 

spherical average is computed: 
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Using this weighted spherical average improves the accuracy of charge partitioning compared to using a 

simple spherical average, because it weighs more heavily those regions of space where atoms overlap in 

order to reduce the atomic dipoles.S2  

 During the 4th, 5th, and 6th charge partitioning steps, the 6th, 9th, and 12th Lagrangians are used to 

perform reshaping to ensure the tails of buried atoms do not become too diffuse. This is done by enforcing 

the constraints 
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This reshaping is done by minimizing the following optimization functional 
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where  II

A Ar  and II

A  are Lagrange multipliers enforcing constraints (S27) and (S28), respectively.S3 

  II

A Ah G r  is a convex functional with the unique minimum:S3 
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 During the 4th, 5th, and 6th charge partitioning steps, reshaping is also performed to prevent the tails 

of buried atoms from becoming too contracted. Specifically, the constraints 

   
 
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0
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are imposed by minimizing the following optimization functional (i.e., Lagrangians 7, 10, and 13): 
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where  III

A Ar  and III

A  are Lagrange multipliers enforcing constraints (S34) and (S36), respectively.  

  III

A Ah r  is a convex functional whose unique minimum isS2  

     
   

   
III III

A A A AIII III upper

A A A A A A A A A

A A

d r 2 r
H r G r 1 r r

dr r

  
      

 
 (S38) 

where 
 5

AH , 
 6

AH , and 
 7

AH  are obtained by the reshaping performed on the 4th, 5th, and 6th charge 

partitioning steps, respectively. 

S2. Spin partitioning Lagrangian and flow diagram 

S2.1 Spin partitioning Lagrangian 

 “The electron-spin density can be described using a four component spinor, whose four charge 

density components are directly related to the total electron density,  r , and the spin magnetization 

density,  m r . Either the Dirac spinor or the Pauli spin matrices can be used to describe this spinor.S4-6 

To make our method equally applicable for either spin formulation, we use  r  and  m r  directly. The 

operator for measuring the spin of electron j is 

         x y z
ˆ ˆ ˆs j xs j ys j zs j     (S39)  

where sx(j), sy(j), and sz(j) are the operators for measuring its spin along the x̂ , ŷ , and ẑ  directions, 

respectively.S7 Here, we denote the magnitude and direction of a vector by b b  and b̂ b / b , 

respectively. We use dirac  to denote the Dirac delta function and   to denote a variational derivative. For 

a system containing N electrons, the spin magnetization density,  m r , can be computed by summing the 
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spins of all electrons at position r  and dividing by the spin magnitude of an individual electron. 

Specifically,  

        
N

dirac

el j el

j 1

m r 2 s j r e


      (S40) 

where   el je  is the multi-electronic wavefunction and  je  are the spatial coordinates of the electrons. 

The factor of 2 occurs because the spin magnitude of an individual electron is one-half. Spin can be 

measured along any unit direction ĥ , and the value of the electron-spin density projected onto a 

measurement direction ĥ  is  

        ˆ ˆr, h r m r h 2     (S41) 

where  r  and  m r  are expressed in units of electrons per unit volume. Collinear magnetism occurs 

when  m̂ r  is parallel to a global magnetization axis, 
globalĥ , while non-collinear magnetism occurs when 

it is not. Collinear magnetism has only two independent electron density components,  r  and  r , 

which are the electron-spin density projected onto measurement directions 
globalĥ  and 

globalĥ , 

respectively.”S8 For collinear magnetism, the  

         global
ˆspin _ density r m r h r r     (S42) 

can take on positive and negative values, depending on whether the density of spin-up or spin-down 

electrons is greater, respectively. A non-magnetic system has  m r 0  everywhere. 

 All DDEC methods use the spin partitioning method of Manz and Sholl that applies to both 

collinear and non-collinear magnetism.S8 This spin partitioning minimizes the Lagrangian 

  
 
 

       
A Aspin 3 2 3 3

A A A A A A A Aspin
A UA A

ˆr ,h
ˆЖ r ,h ln d r d r Щ r d r r r d r

ˆw r ,h

  
        
   

  

      (S43) 

with respect to the atomic spin magnetization density vectors   A Am r .S8 Integration over 2d   signifies 

integration over all possible unit vectors ĥ  that originate at the center of a unit sphere and terminate on 

the unit sphere’s surface.S8 This Lagrangian is convex and has a unique minimum.S8 The magnitude is 

given by 

       A A A A A Am r m r m r  (S44) 

The Lagrange multiplier  A Ar 0   enforces the constraint 

       A A A A A AЩ r r m r 0  
 

(S45) 

that ensures the assigned  A Am r  is chemically feasible.S8 The Lagrange multiplier  r  enforces the 

constraint 

       A A

,A

r m r m r 0   
 

(S46) 

that ensures the assigned   A Am r  sum to  m r  at each position r .S8 The atomic electron-spin density 

projected onto a measurement direction ĥ  isS8 
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        A A A A A A
ˆ ˆr ,h r m r h 2   

 
(S47) 

The ASM vectors are defined as 

    3

A A A AM m r d r   
(S48) 

and sum to the total spin magnetic moment of the unit cell 

  
A

A

M M
 

(S49) 

The atomic weighting factor for spin partitioning 

         spin 0 avg

A A A A A A
ˆ ˆ ˆw r ,h r ,h r ,h  

 
(S50) 

optimizes  A A
ˆr ,h  to resemble the geometric average of the proportional spin partition   0

A A
ˆr , h  and 

the spherically averaged spin partition   avg

A A
ˆr , h .S8 This atomic weighting factor is much more 

chemically accurate than using purely proportional or purely spherically averaged spin partitioning.S8 The 

proportional spin partition assigns spin magnetization density in the same ratio as the electron density:  

         0

A A A Am r m r r r  
 (S51)

 

         0 0

A A A A A A
ˆ ˆr , h r m r h 2     (S52) 

 In non-collinear magnetism, the spin magnetization direction  m̂ r varies as a function of position 

r .  In collinear magnetism, the spin magnetization direction is everywhere parallel to a global spin 

quantization axis:   global
ˆm̂ r h 1  . DDEC spin partitioning for collinear magnetism is identical to that 

for non-collinear magnetism, except spin partitioning for collinear magnetism utilizes projections onto the 

global spin quantization axis, 
globalĥ .S8 For collinear magnetism, the corresponding quantities projected 

onto the global spin quantization axis are scalarsS8 

  
A A global

ˆЦ M h
 

(S53) 

  
global A

A

ˆЦ M h Ц 
 

(S54) 

Eq. (S53) defines the ASMs,  AЦ , for collinear magnetism. In collinear magnetism, electrons are 

traditionally referred to as spin-up or spin-down. AЦ  is the number of spin-up minus spin-down electrons 

assigned to atom A. Ц  is the number of spin-up minus spin-down electrons in the unit cell. Because of 

these scalar projections, collinear spin partitioning requires computing and storing only one-third as many 

spin components as for non-collinear spin partitioning.S8 Consequently, required memory and 

computational time for collinear spin partitioning are about one-third those of non-collinear spin 

partitioning. 

S2.2 Spin partitioning flow diagram 

 Figure S1 is a flow diagram for DDEC spin partitioning. The equations and sequence of steps 

follows Manz and ShollS8, to which we added parallel computation. Each spin cycle consists of two loops 

over atoms and grid points. Between these two loops, the ASMs are tallied and checked for convergence. 

Each of these two loops was parallelized over the outer grid point index. 
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 During each spin cycle, the first loop over grid points computes the   A Am r  and accumulates 

 sum_points radial_shell,A , and  sum_spin_density_vector radial_shell,A  and temporary secondaries 

of the arrays 

     
 

 
A A

A A

,A

r
r L r

r


 


  (S55) 

     trial

A A

,A

m r m r  (S56) 

Each grid point within the cutoff radius is assigned to one of the radial shells of atom A. As the loop over 

grid points for atom A proceeds, the array sum_points accumulates the sum of all grid point volumes 

belonging to each radial shell. The array sum_spin_density_vector  accumulates  A Am r  times each grid 

point volume as a sum over all grid points belonging to each radial shell.  The sums in Eqs. (S55) and 

(S56) must be accumulated in temporary secondaries, because the program still needs to access the full 

values of these arrays (i.e., the primaries) computed from the prior spin cycle to compute  A AL r  in Eq. 

(S60).  

 The first spin cycle sets the atomic spin magnetization densities using proportional spin 

partitioning: 

     0

A A A A1
m r m r

 
 (S57) 

   A A 1
r 0   (S58) 

        0

A A A A A A
1

L r r ,m r    (S59)

 During subsequent spin cycles, the atomic spin magnetization densities are computed by solving 

the following equations 

       
    

 
 

trial

A A A A

m r m r
L r r r r

r


     


 (S60) 

where 

              avg avg 0

A A A A A A A A A Ar r ,m r r ,m r 2       (S61) 

   
b̂ b

a,b
2 a

 
   

 
 (S62) 

     2 1 2
1 ln

1

    
        

    
 (S63) 

Note that  0 0   and  1 2   . “The magnitude  A AL r  was used to update the estimate for  A Am r  

according to two cases. Case 1: If  A AL r   , then    A A A Am r r  and    A A A Ar L r 0    . Case 

2: If  A AL r   ,       inv

A A A A A Am r r 2L r   and  A Ar 0  . These two cases insure Eq. (S45) is 

satisfied for all iterations and  A Ar 0  .”S8 Then 

       A A A A A A
ˆm r m r L r  (S64) 

where  A AL̂ r  is the unit direction of  A AL r . 
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 To speed computation, look-up tables were constructed for the     and 
inv  functions. For 

convenience, a Fortran module containing these spin-related functions and look-up tables is provided as 

described in Section S8. 

 After the first loop over atoms and grid points,  r  and  trialm r  are updated by copying the 

values accumulated in the temporary secondaries to the primaries. Then,   avg

A Am r , AM , and 

  
A

A

M M  (S65) 

are computed. After this, a check for ASM convergence is performed. The set of ASMs is converged if 

the absolute value of each change in ASM component from the previous spin cycle 

   
   A,x A,x A,y A,y A,z A,zj j j 1 j j 1j j 1A

max_ ASM _ change max max M M , M M , M M
 

     
 

 (S66) 

is less than spin_convergence_tolerance and the minimum number of spin cycles is met. A minimum of 

seven spin cycles are performed in all cases, unless the system is essentially non-magnetic (i.e., all ASM 

magnitudes are less than spin_convergence_tolerance) in which case only two spin cycles are performed. 

If the ASMs are converged, the program breaks and generates the ASMs file; otherwise, the program 

continues to the next step. 

 The second major loop over grid points and atoms computes and stores 

     
 

 
A A

A A

,A

r
r r

r

 
     

  (S67) 

After this, the program starts the next spin cycle. 

 For non-collinear magnetism, the CHARGEMOL program also computes and prints the total (
tot ), 

directional ( dir ), and magnitude ( mag ) changes in  m r  over the unit cell:S8  

  tot mag dir 0      (S68) 

     
3

tot 3

i i

i 1U

m r m r d r


     (S69) 

     mag 3

U

m r m r d r 0      (S70) 

        
3

2dir 3

i i

i 1U

ˆ ˆm r m r m r d r 0


      (S71) 

These quantities are useful to assess the role of local magnetic torque and spin dynamics in the material. 

Specifically, the local magnetic torque is negligible when 
dir mag  .S8 Certain kinds of exchange-

correlation functionals only apply in the limit of negligible local magnetic torque.S8-12 

S3. Equations for bond order analysis 

 This method of computing bond orders was introduced by Manz.S13 The first step in bond order 

analysis is to set the number of exchange components. Spin unpolarized calculations have only one 

exchange component: the electron density  r . Collinear magnetism calculations have two exchange 

components: the electron density and the spin density (Eq. (S42)). Non-collinear magnetism calculations 

have four exchange components: the electron density and x, y, z components of the spin magnetization 
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density vector,  m r . The arrays and computational routines in bond order analysis are designed such 

that exactly the corresponding number of exchange components are allocated in memory and computed. 

 The second step is to prepare the density grids for bond order analysis by performing the total 

electron density grid correction described in Section S4 below. 

 The third step is to compute several quantities involving the local atomic exchange vectors, 

        avg avg avg

j j j j j jr r ,m r     (S72) 

First, the sum of these is computed at each grid point: 

     avg avg

A A

,A

r r     (S73) 

Then, the dot product  

       avg avgЮ r r r   (S74) 

is computed and stored for each grid point.  

 The fourth step is to initialize the bond pair matrix. The bond_pair_matrix is a list of translation 

symmetry unique atom pairs that have a non-negligible bond order. In periodic materials, the first atom in 

a translation symmetry unique atom pair can always be taken to be within the reference unit cell. All other 

atom pairs can be derived through lattice vector translations. Let the first atom in a translation symmetry 

unique atom pair be denoted by  i A,0,0,0  indicating atom number A in the reference unit cell. Let the 

second atom in the pair be denoted by  1 2 3j B, , ,  indicating a translated image of atom B along the 

three lattice vectors. Then, the atom pair is symmetry unique if and only if at least one of the following 

conditions is met: (a) B A , (b) 1k 0 , (c) 1k 0   and 2k 0 , or (d) 1 2k k 0   and 3k 0 . The 

translation symmetry unique atom pairs are then further screened to determine whether their density 

overlap is large enough to merit inclusion in the bond_pair_matrix. The bond_pair_matrix is initialized 

by first counting the number of atom pairs to include (i.e., num_included_pairs) and then allocating a 

matrix of size (rows, num_included_pairs). The rows will be used to store relevant information for each 

included atom pair. First, the following information is stored in the bond_pair_matrix for each included 

atom pair: (a)  1 2 3A,B, , ,  and (b) the corner points defining a parallelepiped enclosing all grid points 

that are simultaneously closer than cutoff_radius to atoms i and j. Only grid points simultaneously closer 

than cutoff_radius to atoms i and j contribute to the contact exchange and overlap population of this atom 

pair. Sections S7 and S8 of the bond order article described the method for determining included atom 

pairs and their corresponding parallelepiped corner points for the bond pair matrix.S13  

 The fifth step computes the following quantities by integrating over positions in the relevant 

parallelepiped for each atom pair in the bond pair matrix: contact exchanges (Eq. (S75)), overlap 

populations (Eq. (S76)), temp_1 (Eq. (S77)), and temp_2 (Eq. (S78)). For i  j, the contact exchange (CE) 

is defined asS13 

  
   

 
 

avg avg

i i j j 3

i, j

r r
CE 2 r d r 0

Ю r

 
     (S75) 
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The overlap population is defined as  

   
   

 
i i j j 3

i, j ij

ρ r ρ r
P 2 d r 0

ρ r
    (S76) 

The following intermediate terms are computed and stored: 

  
   

 
 

2
avg avg

i i j j 3

i, j

r r20
temp _1 r d r

3 Ю r

  
  
 
 
  (S77) 

  
   

  
 

avg avg

i i j j 3

i, j 2
avg

r r
temp _ 2 2 r d r

r

 
 


  (S78) 

The summed contact exchange (SCE) for atom A 

  
      

 
 

avg avg avg

A A A A 3

A i, j A

j i

r r r
SCE CE 2 r d r

Ю r

  
      (S79) 

is computed by integrating the right-hand side of Eq. (S79) over all grid points having Ar cutoff _ radius

.S13 

 In Eq. (S76), 
ij 1   if i and j is the selfsame atom (i.e., the nuclear position of atom i is identical 

(and not a periodic image) to the nuclear position of atom j) and zero otherwise. The factor of  ij2  in 

Eq. (S76) corresponds to the convention that the number of electrons (N) in the unit cell is given by 

summing 
i, jP  over all of the atom pairs (including Pi,i) in the material. Note that (i, j) and (j, i) are 

considered the same atom pair and included only once in this summation. Some other papers used a 

slightly different convention, in which the overlap population is defined omitting the  ij2  factor.S14 

We believe the convention used here is preferable, because it represents the contribution an atom pair 

makes to the number of electrons in the unit cell. 

 We define the average spin polarization of bonding as 

  
i, jbond

i, j

i, j

temp _ 2
1

CE
     (S80) 

bond

i, j  varies between 0 and 1. A non-magnetic system having  m r 0  everywhere will always yield 

bond

i, j 0  . A completely spin-polarized system having    m r r   everywhere will always yield 

bond

i, j 1  . Spin-polarized systems having    0 m r r   will yield bond

i, j 1    . 

 The sixth step calculates the bond orders using the following equations:S13 

  coord_num pairwise constraint

i, j i, j i, j i, j i, jB CE     (S81) 

The contact-exchange-weighted coordination number 

     
22

A A i,g

g i

C SCE CE


   (S82) 

is used to construct the smooth sigmoidal function 

     
2

coord _ num

i, j A B1 tanh C C 2 26      (S83) 
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The pairwise term is given by 

   pairwise

i, j i, j i, jmin ,CE    (S84) 

  
 

2

i, j

i, j i, j

CE
temp _1

6
     (S85) 

The constraint term is given by 

  
constra int A B
i, j coord _ num pairwise coord _ num pairwise

i,g i,g j,g j,g

A B

g i g j

N N
mi

½SCE ½SCE
n 1, ,

 

 
  

       
 
 

 (S86) 

 In this step, each atom’s sum of bond orders (SBO) is computed from the right-hand side of the 

following equation: 

  
   

A i, j i, j A i, j

j i i, j BPM i, j BPM

SBO B B SCE CE
  

 
    

  
    (S87) 

where  i, j BPM  denotes corresponding atom pairs in the bond pair matrix. In Eq. (S87), the bracketed 

term approximately includes all atom pairs, even those not explicitly included in the bond_pair_matrix.S13  

 Finally, the computed bond orders, SBOs, and overlap populations are printed. For convenience, 

only those bond orders greater than BO_print_threshold (e.g., 0.001) are printed. The atom pairs and bonds 

are listed in order to make them easy to locate. For each atom pair, the first atom is always located in the 

reference unit cell and the second atom includes translation indices. For example, (-1, 0, 2) indicates that 

the second atom is translated by -1 along the first lattice vector, is not translated along the second lattice 

vector, and is translated by +2 along the third lattice vector. For non-periodic materials, all of the 

translation indices will obviously be (0, 0, 0), because there are no periodic translations. It is important to 

keep in mind that an atom can be bonded to a translated image of itself. For example, in the Ni fcc crystal, 

which contains only one atom in the unit cell, each Ni atom has DDEC6 bond order of 0.28 with each of 

its nearest neighbors (which are translated images of itself). For each printed bond order, the spin 

polarization of bonding (Eq. (S80)) is also printed. Atom pair overlap populations are printed to another 

file. Overlap populations are printed for every atom pair in the bond pair matrix. 

S4. Algorithm for total electron density grid correction 

S4.1 Overview 

 Total electron density grid correction is a process that corrects the   r  grid to intrinsically 

include the valence occupancy corrections. During charge partitioning, the valence occupancy corrections 

are added extrinsically (i.e., external to the   r ). After total electron density grid correction, the 

valence occupancy corrections do not need to be added extrinsically, because the direct integration of 

  r  using the grid already includes them. In this context “valence occupancy correction” refers to the 

occupancy correction for the number of electrons, AN , assigned to each atom. The occupancy corrections 

for atomic dipoles, quadrupoles, and spin moments are not included in the total electron density grid 

correction. Total electron density grid correction does not change the number of electrons, AN , or the net 

charge, qA, assigned to each atom. 
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 The primary reason for including total electron density grid correction is that it allows   A Ar  

to be integrated to yield NA without needing to externally add an occupancy correction. This is critical for 

evaluating quantities that are nonlinear functionals of   A Ar . Bond orders quantify the number of 

electrons exchanged between two atoms. This requires that  A Ar  integrate to the correct number of 

electrons—hence the need for a total electron density grid correction. 

 The scheme described here for total electron density grid correction is similar to that used for core 

grid correction, with a few important differences. The core grid correction was described in the Electronic 

Supplementary Information of our previous article.S2 The total electron density grid correction does not 

replace core grid correction, but acts in addition to it. That is, core grid correction is performed during the 

core electron partitioning and total electron density grid correction is performed at the start of bond order 

analysis. Two key differences between core grid correction and total electron density grid correction are: 

(a) the atomic weighting factors remain fixed during the total electron density grid correction but are 

updated during core grid correction and (b) core grid correction is applied to all grid points while total 

electron density grid correction is applied only to 125 grid points surrounding each nucleus (i.e., a 5×5×5 

block). 

 If using variable-spaced atom-centered integration gridsS15-16 instead of the uniform integration 

grids used here, then this total electron density grid correction would be unnecessary.  

S4.2 Design criteria 

a) The NAC assigned to each atom is not affected by the total electron density grid correction. 

Specifically, the NAC before and after total electron density grid correction will be the same to within 

a specified convergence tolerance (e.g., 10-5 e). 

b) The total electron density grid correction should never produce a negative electron density for any grid 

point. 

c) For a particular atom, the total electron density grid correction should not change the relative ordering 

of grid point densities. Specifically, if grid point 1 contains a higher electron density assigned to atom 

A than grid point 2, then after the correction is applied this should still be the case. 

d) Because nuclear cusps contribute most of the integration error, the total electron density grid correction 

should be localized to those grid points close to atomic nuclei. 

S4.3 Iterative algorithm 

 As shown in Figure S2, the following sequence of steps is performed to correct the total electron 

density grid: 

a) In each correction iteration i, the target correction for each atom is computed as following: 

   avg 3

A A A A Ai i
Correction N r d r    (S88) 

Eq. (S88) may seem strange at first. The key to understanding it is to note that AN  remains fixed 

throughout the entire total electron density grid correction procedure, while  avg

A A i
r  is updated during 

each correction iteration, i. 
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Figure S2: Flow diagram of total electron density grid correction. 
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b) The following quantities are computed for the 5×5×5 block of grid points centered around each atom 

A: 

    
3

A i i
5 5 5

Cubes r
 

    (S89) 

      i,A i5 5 5
max max r

 
    (S90) 

c) A real variable AK  is computed for each atom using the following equations 

  
     

A i
A 2i

A pixeli
i,A

Correction 0.25
K min ,

Cubes V max

 
 
 
 
 

 (S91) 

where 
pixelV  is the volume of each grid point. 

d) Within the 5×5×5 block of grid points surrounding each atom, the total electron density grid,  r , is 

updated by 

   
 

  
i

i 1 2

A i i

r
r

1 2K r



 

 

 (S92) 

e)  avg

A Ar  is updated by 

   
 

 
 

A

A Aavg

A A i 1i 1

r

w r
r r

W r 
    (S93) 

If 
A i

A

Correction charge_convergence_tolerance , the calculation is considered converged and exits. 

Otherwise, the calculation goes back to step a) and repeats the sequence for the next iteration (i.e., 

iteration i+1). 

S4.4 Proof this iterative algorithm satisfies the design criteria 

a) The iterative scheme converges to the desired solution. Proof: Near the solution, we have  

  
  

A i
A i

A pixeli

Correction
K

Cubes V

 
 
 
 

 and   
2

A i i
K r 1  (S94) 

Therefore, we can expand Eq. (S92) as a Taylor series to give 

     
  

  
3

A i

i 1 i i
A pixeli

Correction
r r r residual _1

Cubes V

  
       

  
  

 (S95) 

Summing Eq. (S95) over the 5×5×5 block of grid points yields 

        A i

i 1 i
5 5 5 5 5 5 pixel

Correction
r r residual _ 2

V
   

       (S96) 

Multiplying both sides of Eq. (S96) times 
pixelV  and substituting Eq. (S88) gives 

   avg 3

A A A Ai 1
r d r N residual _ 3


    (S97) 
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Since the residuals contain higher order terms that tend rapidly towards zero as 
A i

Correction  tends 

towards zero, convergence will be achieved when 

  
A i

Correction 0  (S98) 

which is the desired solution. 

b) The corrected total electron density is nonnegative at every grid point. Proof: The minimum of the 

factor   
2

A A Ai i
1 2K r   occurs when 

A i
K 0  and for the grid point    A A i

r max . From Eq. 

(S91), it follows   
2

A A Ai i
K r 0.25  . Therefore,    

2

A A Ai i
1 2K r 1/ 2   . Examining Eq. 

(S92), this means  
i 1

r 0


  . 

c) For a particular atom, the correction does not change the relative ordering of grid point densities. 

Proof: Consider the function 

   
2

s
њ s

1 2Ks



 (S99) 

which has the derivative 

  

 
3/2

2

dњ 1

ds 1 2Ks



 (S100) 

 њ s  is a monotonically increasing function of s over the range 2Ks 0.5 . Because Eq. (S92) has the 

functional form  њ s , the relative ordering of grid point densities is preserved for each atom. 

d) The correction is localized to those grid points closest to atomic nuclei. This is manifestly true, because 

the correction is limited to a 5×5×5 block of grid points around each atomic nucleus. 

S4.5 What features cause this scheme to converge rapidly and robustly? 

a) The correction is localized to regions near each atomic nucleus where typically    A Aw r W r 1 . 

This makes corrections for different atoms almost independent of each other. 

b) The relative ordering of electron density values for an atom is preserved. This ensures a smooth 

behavior.  

c) Convergence is rapid near the solution, as evidenced by the Taylor series expansion in Eqs. (S95)–

(S97). 

d) Examining Eqs. (S91) and (S92), the density changes are bounded by 

  
 

 
i 1

i

r1
2

r3




 


 (S101) 

The extreme values occur for the grid point corresponding to  
i,A

max  when   
3

i
5 5 5

r
 

  is 

dominated by  
i,A

max  such that      
33

i,Ai
5 5 5

r max
 

     and under the condition that 

A i
Correction  is large. Under these conditions, AK 0  gives the limiting behavior 
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     
   

    
    

   i,A

i 1,A i,A2

2 i,A

i,A

r max
r max 2 r max

0.25
1 2 r max

r max




   

 



 (S102) 

Under these conditions, 
AK 0  gives the limiting behavior 

     
   

    
    

i,A

i 1,A
2

A i

3 i,A

pixeli,A

r max
r max

Correction
1 2 r max

r max V




 

 



 (S103) 

With 
AK 0  and 

A i
Correction  dominated by    

i,A
r max , substituting 

     A pixeli i,A
Correction r max V    into Eq. (S103) gives: 

     
   A A i

i 1,A

r max
r max

3


   (S104) 

Noting that  
20

2 1024 , this means about 20 iterations are required to increase a grid point density by 

a factor of 103. Noting that  
13

3 1262.665 , this means about 13 iterations are required to decrease a 

grid point density by a factor of 103. Because the approach to convergence is smooth and the total electron 

density assigned to each grid point is never off by more than a factor of 106, this means convergence is 

always achieved in fewer than 40 iterations. In practice, convergence is nearly always achieved in fewer 

than 20 iterations. 

S5. Allocation and deallocation of big arrays 

 Figure S3 shows the allocation and deallocation of big arrays. Big arrays are those that run over 

the grid points in the unit cell. The name of the big array is listed in the first column. The remaining 

columns list the modules where big arrays exist. The modules are listed in sequence from left to right, 

with the colored strip for each array indicating those modules for which the array exists. The array is 

allocated and initialized in the left-most module of the colored strip and deallocated in the right-most 

module of the colored strip. 

 Names of the big arrays are explained as follows. The entries labeled “raw grid inputs” refer to 

arrays that store data read from a file before it has been parsed and transferred into more formal arrays. 

The word “pseudodensity” just means “a density-like quantity”. The valence and spin interpolation grids 

refer to temporary grids of different spacing than the main grids. Arrays beginning with the term 

“accumulate” are temporary secondaries that compute the updated value of an array through summation. 

These are used when access to the previously-computed primary array is needed during the update 

computation. After the value of the temporary secondary has been completely updated, its updated value 

is transferred to the primary array. Names with the word “projection” in them refer to the scalar projection 

of a vector quantity onto 
globalĥ  in collinear magnetism. The maximum_dominant_atom_weight stores the 

 
  A A

A
max w r  for each grid point, and dominant_atom_points stores the atom number yielding this 
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maximum value for each grid point. Table S1 shows the correspondence between selected names of big 

arrays in CHARGEMOL and their equivalent mathematical notation in this paper. 

 
Figure S3. Modules with allocation and deallocation of big arrays. 
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Table S1. Names of selected big arrays in CHARGEMOL and their equivalent mathematical notation. 

array name mathematical notation 

core_density  core r  

spin_density      global
ˆm r h r r     

spin_density_vector  m r  

valence_density  val r  

valence_pseudodensity a 

total_pseudodensity  W r  

core_pseudodensity  coreW r  

ref_pseudodensity  ref r  

total_density  r  

localized_pseudodensity   
4

ref ref

A A A

,A

r ,q  

conditioned_ref_pseudodensity  cond r  

trial_spin_density     A A

,A

r r    

trial_spin_density_vector  trialm r  

Ypsilon_projection   global
ˆr h  

Omega_projection   global
ˆr h  

Ypsilon_vector  r  

Omega_vector  r  

corrected_total_density  r  

dot_product_total_spherical_avg_atomic_exchange_vectors  Ю r  

total_local_spherical_avg_atomic_exchange_vectors  avg r  

a Smooth valence pseudodensity in PAW method. 

 In Figure S3, the height of each cell is proportional to the memory required to store that array, with 

a unit height corresponding to storing one double precision real number at every grid point. Green colored 

cells are used by non-magnetic, collinear magnetic, and non-collinear magnetic calculations. Yellow 

colored cells are used only by collinear magnetic calculations. Red colored cells are used only by non-

collinear magnetic calculations. The total_local_spherical_avg_atomic_exchange_vectors has a height 

proportional to the number of exchange components: 1 for non-magnetic, 2 for collinear magnetic, and 4 

for non-collinear magnetic calculations.  

 Some calculations will not use all modules. Calculations with pre-computed electron density grid 

input files will use the Read density grids module, while calculations with Gaussian basis set coefficients 

input files will used the Density grids from basis set coefficients module. Non-magnetic calculations skip 

the spin moments iterator. The Compute dominant atom volume module is used for calculations that 

compute the valence occupancy corrections by processing both the valence density and valence 

pseudodensity input files of a projector augmented wave (PAW) quantum chemistry calculation. 
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 One should be careful about interpreting the total memory requirements from Figure S3. 

Specifically, some big arrays might be deallocated in a module before other big arrays are allocated in that 

same module. This can cause the overall memory requirements for that module to be smaller than the total 

number of big arrays used in that module. Localized_pseudodensity does not increase the memory 

requirements of the DDEC6 valence iterator, because it is used and deallocated before some of the other 

big arrays are allocated.  

 One should keep in mind that Figure S3 represents a snapshot of big array usage in the CHARGEMOL 

program at the time this article was first published. Because software programs evolve, precise treatment 

of big arrays in this software program may change over time. Also, only those modules in which big arrays 

are allocated or deallocated are listed in Figure S3. The program contains many additional modules which 

are not listed, because they neither allocate nor deallocate big arrays. 

S6. Computational parameters 

 Table S2 shows the parameters used by CHARGEMOL to ensure computational efficiency and 

precision. Double precision was kept during the entire program, making the first 15 digits after the decimal 

point significant. A cutoff radius was set to 500 picometers for all atoms, because the atomic electron 

density after that radius is negligible. Integrations over radius were obtained by dividing the 500 

picometers into 100 uniformly spaced radial shells and adding the contribution of each shell. To avoid 

division by zero errors, we used if statements that avoid divisions for denominators less than a 

zero_tolerance of 10-10. To help ensure accurate integrations, each grid point contributes less than 0.03 

valence electrons and a volume of less than 0.0157 bohr3. An integration tolerance and an integration 

tolerance percent (i.e., the larger of 0.1 electrons and 0.10%) was set as a maximum allowed error on the 

integrated number of (valence) electrons. The calculation will terminate with a message to use a better 

grid if these criteria are not met. 

 Table S2 also shows the parameters used to compute the NACs. The charge_convergence 

_tolerance was set to 10-5, meaning the NACs have to change less than that in two consecutive iterations 

to be considered converged during the update_kappa = .TRUE. iterations. During update_kappa = .TRUE. 

iterations, A   is set to 0 for all atoms that do not overlap other atoms, and an atom is considered to not 

overlap any other atoms if A AN nonoverlapping _ atom _ tolerance   .S2 After charge partitioning 

completes, linear regression over rmin _ cloud _ penetration Ar cutoff _ radius is used to compute the 

electron cloud parameters д  and Ъ  for each atom. 

The ASMs were computed using the following parameters. A spin_convergence_tolerance of 
55 10  was used. Xi_threshold and Xi_zero_tolerance define thresholds below which the Xi, 

Xi_derivative, and Xi_inverse functions were computed using linear interpolation to avoid division by 

zero errors. Lookup tables with num_lookup_points = 10000 points were constructed to more quickly 

evaluate the spin-related mathematical functions and their inverses. 

 Finally, Table S2 shows the bond order analysis parameters. Bond orders smaller than 0.001 were 

not printed. 
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Table S2. Parameters for the DDEC NACs, ASMs, and bond orders calculations. 

variable value units function 

global parameters 

dp 8 bytes First 15 digits are significant 

nshells 100 shells Number of radial integration shells 

zero_tolerance 10-10 none Helps to avoid divisions by zero 

integration_tolerance & 

integration_tolerance_percent 

0.1 

0.10 

electrons 

percent 

Number of (valence) electrons must integrate with 

a difference less than the larger of these 

pixel_integration_tolerance 0.03 electrons 
Each pixel should contribute fewer valence 

electrons than this 

maxpixelvolume 0.0157 bohr3 Volume per grid point cannot exceed this 

cutoff_radius 500 picometers 
Atomic electron density assumed to be zero 

outside this radius 

net atomic charges 

charge_convergence_tolerance 10-5 electrons Each NAC must change less than this to converge 

nonoverlapping_atom_tolerance 10-7 electrons 
Defines the A AN   threshold for a non-

overlapping atom 

rmin_cloud_penetration 200 picometers 
The electron cloud parameters are fit from this 

radial value to cutoff_radius 

atomic spin moments 

spin_convergence_tolerance 5x10-5 electrons Each ASM must change less than this to converge 

Xi_threshold 0.001 none 
For smaller , use linear interpolation to compute 

Xi and Xi derivative functions 

Xi_zero_tolerance 10-6 none 
For smaller  , use linear interpolation to compute 

inv  function 

num_lookup_points 10000 none Number of values in spin look up tables 

bond orders 

BO_print_cutoff 0.001 none Smaller bond orders are not printed 

S7. How to use the enclosed reshaping subroutines 

 Within the module_reshaping_subroutines.f08 file are two Fortran subroutines for reshaping 

functions of rA. All of the real numbers used in these routines are double precision (i.e., 64 bit, 8 byte). 

 The SUBROUTINE monotonic_decay_subroutine performs reshaping to create a monotonically 

decreasing function of rA:  

PURE SUBROUTINE monotonic_decay_subroutine(unreshaped_partial_density, nshells, 

radial_shell_integration_weight, reshaped_partial_density, local_reshaping_iterations) 

INTEGER, INTENT(IN) :: nshells 

REAL(kind=dpr), INTENT(IN), DIMENSION(:) :: unreshaped_partial_density, 

radial_shell_integration_weight 

REAL(kind=dpr), INTENT(OUT), DIMENSION(:) :: reshaped_partial_density  

INTEGER, INTENT(OUT) :: local_reshaping_iterations 
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The unreshaped_partial_density array contains the input function on each radial shell. The number of 

radial shells is called nshells. The reshaped_partial_density is the output function that has been constrained 

to monotonically decrease by minimizing the reshaping Lagrangian Ih  described in Eq. (S22) above. (The 

output will always be non-negative: reshaped_partial_density ≥ 0.) This Lagrangian constrains the 

integrals of the input (i.e., unreshaped_partial_density) and output (i.e., reshaped_partial_density) 

functions over the grid points to be equal. These integrals are computed using 

       
cutoffr nshells

23

A A A A A i i

i 10

f r d r 4 r f r dr Џ f


       (S105) 

where fi is the value of the function f(rA) on the ith radial shell and iЏ  is the integration weight for that 

radial shell. These radial shell integration weights  iЏ  are stored in the array 

radial_shell_integration_weight that is an input argument of the subroutine. Note that the 

radial_shell_integration_weight and function value are expected to be positive. If iЏ 0  or if 0 , that 

radial shell will be ignored when enforcing the monotonicity constraint (but will still be included in the 

integration of the function, Eq. (S105)). The output variable local_reshaping_interations is the integer 

number of reshaping iterations that were required to achieve convergence. 

 The SUBROUTINE tail_exponential_decay_subroutine performs reshaping to create a function 

of rA that satisfies the constraints: 

  i 1 i i i 1 if single _ first _ exp_ const f f single _ second _ exp_ const       (S106) 

The two constraints in Eq. (S106) are applied separately and recursively, starting with i = 2 and continuing 

until i = nshells. The inputs should be constructed by 

    lower

i A A Asingle _ first _ exp_ const exp r r    (S107) 

    upper

i A A Asingle _ second _ exp_ const exp r r    (S108) 

where Ar  is the distance between radial shell i and radial shell (i-1). (Note that Ar  can be different for 

different values of i.) This subroutine has the form: 

PURE SUBROUTINE tail_exponential_decay_subroutine(unreshaped_partial_density, 

single_first_exp_const, single_second_exp_const, nshells, radial_shell_integration_weight, 

reshaped_partial_density, local_reshaping_iterations) 

INTEGER, INTENT(IN) :: nshells 

REAL(kind=dpr), INTENT(IN), DIMENSION(:) :: single_first_exp_const, single_second_exp_const 

REAL(kind=dpr), INTENT(IN), DIMENSION(:) :: unreshaped_partial_density, 

radial_shell_integration_weight 

REAL(kind=dpr), INTENT(OUT), DIMENSION(:) :: reshaped_partial_density 

INTEGER, INTENT(OUT) :: local_reshaping_iterations 

The unreshaped_partial_density array contains the input function on each radial shell. The number of 

radial shells is called nshells. The reshaped_partial_density is the output function that has been constrained 

to satisfy Eq. (S106)  by minimizing the reshaping Lagrangians 
IIh  and 

IIIh  described in Eqs. (S32) and 

(S37). (The output will always be non-negative: reshaped_partial_density ≥ 0.) These Lagrangians 
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constrain the integrals of the input (i.e., unreshaped_partial_density) and output (i.e., 

reshaped_partial_density) functions over the grid points to be equal. These integrals are computed using 

Eq. (S105) described above. The radial shell integration weights  iЏ  are stored in the array 

radial_shell_integration_weight that is an input argument of the subroutine. Note that the 

radial_shell_integration_weight and function value are expected to be positive. If iЏ 0  or if 0 , that 

radial shell will be ignored when enforcing the constraint preventing the function from being too diffuse 

(but will still be included in the integration of the function, Eq. (S105)). The output variable 

local_reshaping_interations is the integer number of reshaping iterations that were required to achieve 

convergence. 

S8. How to use the enclosed spin functions 

 Within the module_spin_functions.f08 file are several spin-related functions and subroutines 

written in Fortran. All of the real numbers used in these routines are double precision (i.e., 64 bit, 8 byte).  

 The following three functions are elemental functions, which means they can work on each 

element of an array argument as if it were a scalar. All three of these functions have double precision real 

number arguments and return a double precision real number result: 

ELEMENTAL FUNCTION calculate_Xi(tau) RESULT(Xi)        

ELEMENTAL FUNCTION calculate_Xi_derivative(tau) RESULT(Xi_derivative)  d / d   

ELEMENTAL FUNCTION calculate_inverse_Xi(Xi_value) RESULT(inv_Xi)   inv Xi _ value  

 To speed computation, the SUBROUTINE generate_spin_lookup_tables() can be called to 

generate lookup tables for calculate_Xi and calculate_inverse_Xi. These lookup tables are called 

Xi_lookup and inverse_Xi_lookup, respectively. A lookup table for calculate_Xi_derivative was not 

computed, because this function was only used to calculate_inverse_Xi which is used to generate its own 

lookup table. We used 10000 lookup points.  

 The value of each spin function can be evaluated quickly via the following functions performing 

interpolation using these lookup tables. Each of these two functions return a double precision real number 

as the function result, and the result variable equals the function name. For clarity, the declaration 

statements for the input arguments are listed below:  

PURE FUNCTION fast_calculate_Xi(tau, Xi_lookup) 

REAL(kind=dpr), INTENT(IN) :: tau, Xi_lookup(num_lookuppoints) 

PURE FUNCTION fast_calculate_inverse_Xi(Xi_value, inverse_Xi_lookup) 

REAL(kind=dpr), INTENT(IN) :: Xi_value, inverse_Xi_lookup(num_lookuppoints) 

 Finally, the above functions are used to compute  
b̂ b

a,b
2 a

 
   

 
 for non-collinear magnetism 

(where b b   is the magnitude of b  ), whose result variable equals the function name: 

PURE FUNCTION calculate_theta_vector(a, b_vector, Xi_lookup) 

REAL(kind=dpr), INTENT(IN) :: a, b_vector(3), Xi_lookup(num_lookuppoints) 

REAL(kind=dpr) :: calculate_theta_vector(3)  
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 For collinear magnetism, the corresponding function is called calculate_theta_scalar, and it returns 

the scalar projection of  a,b  onto 
globalĥ   into a result variable equal to the function name: 

PURE FUNCTION calculate_theta_scalar(a, b_projection, Xi_lookup)  

REAL(kind=dpr), INTENT(IN) :: a, b_projection, Xi_lookup(num_lookuppoints) 

REAL(kind=dpr) :: calculate_theta_scalar 

Here, the input argument b_projection is the scalar projection of b  onto 
globalĥ  (i.e., 

global
ˆb _ projection b h ). 
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