Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary	Data	
Figure caption	S1	RMSD versus MD simulation time (30 ns) of AChE and BuChE-ligand complexes. The conformation was recorded every 2 fs. RMSD values were calculated by comparing each of those conformations with the original conformation.
	S2	RMSD versus MD simulation time (30 ns) of A β_{1-40} peptide free dimer and A β_{1-40} peptide dimer-ligand complexes at sites I and II. The conformation was recorded every 2 fs. RMSD values were calculated by comparing each of those conformations with the original conformation.
	S3	3D representations of initial minimised A β_{1-40} peptide dimer structure without ligand (left) and final 30 ns of MD simulations without ligand (right).
Table caption	S1	Contributions of various energy components to the binding free energy (kcal mol ⁻¹) of AChE-Compound 2 complex (26–30 ns).
	S2	Contributions of various energy components to the binding free energy (kcal mol ⁻¹) of AChE-Tacrine complex (26–30 ns).
	S3	Contributions of various energy components to the binding free energy (kcal mol ⁻¹) of BuChE-Compound 2 complex (26–30 ns).
	S4	Contributions of various energy components to the binding free energy (kcal mol ⁻¹) of BuChE-Tacrine complex (26–30 ns).
	S5	Docking study of compound 2 with the NMR structure of an $A\beta_{1-40}$ (PDB ID: 2LMN). Number of distinct conformational clusters found = 28, out of 100 runs, using rmsd-tolerance of 2.0 Å for amyloidogenic sites I and II.
	S6	Docking study of myricetin with the NMR structure of an $A\beta_{1-40}$ (PDB ID: 2LMN). Number of distinct conformational clusters found = 22, out of 100 runs, using rmsd-tolerance of 2.0 Å for amyloidogenic sites I and II.
	S7	Contributions of various energy components to the binding free energy (kcal mol ⁻¹⁾ of A β_{1-40} peptide dimer-compound 2 complex at Site I (20–25 ns).
	S8	Contributions of various energy components to the binding free energy (kcal mol ⁻¹) of A β_{1-40} peptide dimer-myricetin complex at Site I (26–30 ns).
	S9	Contributions of various energy components to the binding free energy (kcal mol ⁻¹) of AB ₁₋₄₀ peptide dimer-compound 2 complex at Site II (15–20 ns).
	S10	Contributions of various energy components to the binding free energy (kcal mol ⁻¹) of A β_{1-40} peptide dimer–myricetin complex at Site II (26–30 ns).
	S11	The interchain (chains A and B) binding free energy (kcal mol ⁻¹) of A β_{1-40} peptide free dimer (26–30 ns).
	S12	The interchain (chains A and B) binding free energy (kcal mol ⁻¹) of $A\beta_{1-40}$ peptide dimer-compound 2 complex at Site I (20–25 ns).

- S13 The interchain (chains A and B) binding free energy (kcal mol⁻¹) of $A\beta_{1-40}$ peptide dimer-myricetin complex at Site I (26–30 ns).
- S14 The interchain (chains A and B) binding free energy (kcal mol⁻¹) of $A\beta_{1-40}$ peptide dimer-compound 2 complex at Site II (15–20 ns).
- S15 The interchain (chains A and B) binding free energy (kcal mol⁻¹) of $A\beta_{1-40}$ peptide dimer-myricetin complex at Site II (26–30 ns).

Figure S1

Figure S2

Tabl	e S1
------	------

PARAME	TER	COMPL	EX	RECEP	LIG	AND	DELTA		
	ME	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-172	224.42	68.64	-17182.16	68.35	-21.74	0.67	-20.53	2.76
VDW	-25	524.49	34.04	-2491.67	33.96	14.93	1.69	-47.75	2.37
INT	150	074.78	63.50	15035.66	63.73	39.12	4.80	0.00	0.00
GAS	-46	674.13	90.26	-4638.16	89.90	32.31	4.70	-68.28	3.16
PBSUR	-	146.89	1.16	149.43	1.17	4.65	0.05	-7.19	0.10
PBCAL	-47	741.80	60.04	-4776.37	60.64	-27.69	0.51	62.25	5.12
PBSOL	-45	594.91	59.39	-4626.93	60.00	-23.04	0.51	55.07	5.13
PBELE	-219	966.22	43.01	-21958.52	42.80	-49.43	0.62	41.73	5.55
PBTOT	-92	269.03	71.40	-9265.09	70.95	9.27	4.71	-13.21	5.09
GBSUR	-	104.91	1.24	106.77	1.23	2.54	0.03	-4.41	0.11
GB	-50	015.12	59.41	-5028.91	59.26	-30.32	0.57	44.11	2.24
GBSOL	-49	910.21	58.89	-4922.14	58.73	-27.78	0.56	39.71	2.20
GBELE	-222	239.54	35.54	-22211.07	35.51	-52.06	0.53	23.59	1.53
GBTOT	-95	584.34	66.42	-9560.30	66.23	4.53	4.72	-28.57	2.25

PARAME	TER	COMPI	EX	RECEPT	RECEPTOR			DELTA		
	ME	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD	
ELE	-174	412.69	85.74	-17163.06	85.47	14.70	0.47	-264.34	11.94	
VDW	-25	503.88	34.67	-2485.36	34.58	10.87	1.19	-29.39	1.75	
INT	150	045.84	68.54	15010.93	68.51	34.91	3.74	-0.00	0.00	
GAS	-48	370.73	97.34	-4637.48	96.99	60.48	3.61	-293.73	12.00	
PBSUR		147.62	1.16	148.70	1.17	3.04	0.02	-4.11	0.09	
PBCAL	-46	631.68	70.72	-4841.46	69.90	-60.94	0.45	270.73	10.58	
PBSOL	-44	484.05	70.15	-4692.76	69.32	-57.91	0.45	266.62	10.61	
PBELE	-220	044.37	42.81	-22004.52	42.52	-46.24	0.44	6.39	4.84	
PBTOT	-93	354.79	69.46	-9330.25	69.35	2.57	3.58	-27.11	4.67	
GBSUR		105.28	1.23	106.04	1.22	1.44	0.01	-2.20	0.07	
GB	-48	376.48	69.28	-5087.54	69.11	-60.15	0.57	271.21	9.43	
GBSOL	-47	771.20	68.85	-4981.49	68.71	-58.72	0.57	269.01	9.39	
GBELE	-222	289.17	36.60	-22250.60	36.58	-45.45	0.61	6.88	3.25	
GBTOT	-96	541.93	67.35	-9618.98	67.38	1.76	3.57	-24.72	3.19	

PARAME	TER	COMPL	EX	RECEP	LIG	AND	DELTA		
	ME	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-15	026.67	77.59	-14995.66	77.55	-26.64	1.33	-4.37	2.97
VDW	-2	492.60	35.87	-2459.98	35.73	14.62	1.82	-47.25	2.49
INT	15	307.41	67.16	15267.22	66.98	40.19	4.89	0.00	0.00
GAS	-22	211.86	95.41	-2188.42	95.20	28.17	5.05	-51.62	4.10
PBSUR		151.51	1.05	153.77	1.06	4.60	0.05	-6.85	0.12
PBCAL	-5	516.83	65.44	-5528.31	65.63	-26.82	0.98	38.30	4.77
PBSOL	-53	365.31	65.35	-5374.54	65.56	-22.22	0.99	31.45	4.76
PBELE	-20	543.49	39.81	-20523.97	39.31	-53.46	0.99	33.93	3.81
PBTOT	-75	577.17	66.43	-7562.96	65.70	5.95	4.86	-20.17	3.97
GBSUR		100.10	1.31	101.71	1.34	2.52	0.02	-4.13	0.14
GB	-5	767.87	65.08	-5768.03	65.05	-29.27	0.91	29.42	2.98
GBSOL	-5	667.77	64.92	-5666.32	64.88	-26.75	0.91	25.30	2.92
GBELE	-20	794.54	35.03	-20763.69	35.02	-55.90	0.89	25.05	1.40
GBTOT	-78	879.63	65.06	-7854.74	64.69	1.43	4.92	-26.32	2.36

Tabl	le	S4
------	----	----

PARAME	TER	COMP	LEX	RECEP	RECEPTOR		AND	DELTA		
	MEA	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD	
ELE	-150	086.80	83.92	-14988.21	84.92	14.65	0.48	-113.23	9.55	
VDW	-25	503.23	34.38	-2485.87	34.43	10.91	1.22	-28.27	2.08	
INT	152	298.30	66.01	15263.26	65.78	35.04	3.98	-0.00	0.00	
GAS	-22	291.73	100.27	-2210.82	99.97	60.59	3.96	-141.50	9.78	
PBSUR	1	L50.88	1.13	152.03	1.13	3.04	0.02	-4.19	0.10	
PBCAL	-54	198.83	70.62	-5557.15	71.46	-60.84	0.46	119.17	6.86	
PBSOL	-53	347.94	70.23	-5405.12	71.07	-57.80	0.46	114.98	6.85	
PBELE	-205	585.62	39.13	-20545.36	39.04	-46.19	0.44	5.94	5.02	
PBTOT	-76	539.67	66.68	-7615.94	66.04	2.79	3.89	-26.52	5.32	
GBSUR		98.22	1.38	98.89	1.36	1.44	0.01	-2.10	0.08	
GB	-57	709.25	72.34	-5772.39	73.48	-60.01	0.56	123.15	7.41	
GBSOL	-56	511.03	71.87	-5673.50	73.07	-58.57	0.56	121.04	7.40	
GBELE	-207	796.05	34.20	-20760.60	34.10	-45.36	0.66	9.91	3.20	
GBTOT	-79	902.76	65.80	-7884.32	65.32	2.02	3.93	-20.46	3.52	

Cluster Rank	 Lowest Binding	Run	 Mean Binding	Num	 Histog 	ram					
	Energy		Energy	Clus	1 5	10	15	20	25	30	35
	i		1		:	L	:	1	:	1	:
1	-5.97	27	-5.69	24	########	****	#####	****	## A(16-21) –
					AMYLOID	OGENI	C REG	ION 1			
					(SITE I:	[Chai	n A(1	6-21)	1		
2	-5.41	55	-4.95	13	#######	#####	#A(16	-21)			
3	-5.07	61	-4.79	6	#####A	B(16-	21)				
4	-5.06	51	-4.71	2	##A(16-	21)					
5	-5.06	86	-4.98	8	#######	#A(16	-21)				
6	-5.03	14	-4.57	2	##A(16-	21)					
7	-4.99	48	-4.65	2	##A(16-	21)					
8	-4.98	39	-4.90	3	###A(16	-21)					
9	-4.92	21	-4.92	1	#A(16-2	1)					
10	-4.90	78	-4.67	2	##A(16-	21)					
11	-4.83	95	-4.83	1	#A (16-2	1)					
12	-4.71	73	-4.71	1	# B(32-	36)					
					AMYLOID	OGENI	C REG	ION 2			
					(SITE II	:[Cha	in B(32-36)]		
13	-4.66	20	-4.66	1	#						
14	-4.64	2	-4.64	1	#						
15	-4.61	65	-4.46	3	###						
16	-4.60	96	-4.35	3	###						
17	-4.57	10	-4.30	12	########	#####					
18	-4.51	23	-4.51	1	#						
19	-4.31	7	-4.31	1	#						
20	-4.10	97	-4.06	4	####						
21	-4.00	43	-4.00	1	#						
22	-3.99	4	-3.99	1	#						
23	-3.95	69	-3.95	1	1 #						
24	-3.94	91	-3.93	2	##						
25	-3.88	99	-3.88	1	#						
26	-3.85	56	-3.85	1	#						
27	-3.79	17	-3.79	1	#						
28	-3.59	19	-3.59	1	#						

Tabl	e S6
------	------

Cluster	 Rank	Lowest	1	Run	1	Mean	 Num	 Histog	gram					
		Enaing	1		4	Enaling	l Clue	. 5	10	15	20	25	20	25
	1	Energy	1		1	Energy		1 .	10		1		1	
1	— i	-3.95	1-	30	ï	-3.64	7	1 ########	£			<u> </u>	1000	
2	1	-3.92	i	20	i	-3.49	1 11	1#######	*****					
3	i	-3.90	i	22	i	-3.90	1 1	#						
4	Ì	-3.89	1	28	Ì	-3.58	29	AMYLOII	###### DOGENI	##### C REG	##### ION 1	#####	# A(1	6-21)
5	1	-2 00		07	1	-2 00	1 1	(SIIE I)	: [Cha	III A(10-21	/]		
5	-	-3.80	1	97	1	-3.60	1 1	1#						
07	1	-3.75	1	20	1	-3.66	1 2	1####	22-201					
,	1	-3.66	1	70	1	-3.65	1 3	AMYLOII (SITE II	DOGENI [:[Cha	C REG in B(ION 2 32-36)]		
8	1	-3.66	1	54	1	-3.48	2	##						
9	1	-3.58	1	64	1	-3.47	19	######	*#####	#####	# #			
10	1	-3.56	1	47	1	-3.41	4	####						
11	1	-3.52	1	79	1	-3.50	1 2	1##						
12	1	-3.49	1	16	1	-3.49	1	1 #						
13	1	-3.46	1	88	1	-3.43	1 2	# #						
14	1	-3.44	1	81	1	-3.42	2	##						
15	1	-3.27	1	69	1	-3.27	1	l #						
16	1	-3.26	1	78	1	-3.17	3	###						
17	1	-3.25	1	35	1	-3.25	1	l #						
18	1	-3.14	1	37	1	-3.10	2	##						
19	1	-3.02	1	63	1	-3.02	1	l #						
20	1	-2.68	1	40	1	-2.68	1	#						
21	- I	-2.61	1	41	1	-2.59	2	# #						
22	1	-2.59	1	75	1	-2.59	1	#						

PARAMETER		COMF	LEX	RECEPT	OR	LIGA	ND	DELTA		
18	ME	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD	
ELE	-99	8.15	32.40	-960.95	31.53	-28.01	1.32	-9.18	3.25	
VDW	-10	0.61	11.05	-80.32	10.84	14.54	1.62	-34.83	2.46	
INT	172	9.48	24.24	1691.43	23.32	38.05	4.85	0.00	0.00	
GAS	63	0.72	38.86	650.16	38.16	24.57	4.93	-44.01	4.31	
PBSUR	4	4.89	0.92	45.62	0.99	4.75	0.05	-5.47	0.22	
PBCAL	-126	5.27	32.15	-1256.27	31.51	-33.91	0.97	24.92	3.47	
PBSOL	-122	0.37	31.95	-1210.65	31.28	-29.17	0.97	19.45	3.37	
PBELE	-226	3.42	12.53	-2217.22	11.94	-61.93	0.91	15.73	2.57	
PBTOT	-58	9.65	24.30	-560.49	23.64	-4.60	4.77	-24.56	2.73	
GBSUR	2	8.60	0.56	29.38	0.56	2.64	0.03	-3.42	0.17	
GB	-130	7.34	31.14	-1293.68	30.28	-37.04	0.99	23.38	3.60	
GBSOL	-127	8.74	30.97	-1264.30	30.10	-34.40	0.98	19.96	3.56	
GBELE	-230	5.49	10.13	-2254.63	10.04	-65.05	0.77	14.19	1.14	
GBTOT	-64	8.02	24.42	-614.14	23.71	-9.83	4.82	-24.05	2.26	

Та	b	le	S8
Iа	b	le	58

PARAMETER		COMPLEX		RECEF	RECEPTOR		AND	DELTA	
	ME	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-98	4.59	29.08	-887.98	28.91	-37.92	2.04	-58.68	5.11
VDW	-13	0.27	13.65	-118.05	12.79	20.74	2.42	-32.97	3.98
INT	172	9.84	23.06	1691.77	22.44	38.07	4.53	-0.00	0.00
GAS	61	4.98	34.54	685.74	33.89	20.89	4.41	-91.65	4.72
PBSUR	3	7.26	1.26	38.61	1.30	3.43	0.02	-4.78	0.10
PBCAL	-125	9.39	25.82	-1284.20	25.91	-45.55	1.34	70.36	3.42
PBSOL	-122	2.13	25.66	-1245.59	25.78	-42.12	1.34	65.58	3.42
PBELE	-224	3.97	13.82	-2172.18	12.60	-83.47	1.26	11.68	4.40
PBTOT	-60	7.14	23.55	-559.85	22.88	-21.23	4.17	-26.07	3.67
GBSUR	2	3.77	0.88	25.25	0.92	2.03	0.01	-3.51	0.13
GB	-130	5.73	25.77	-1326.73	25.87	-50.44	1.62	71.44	3.25
GBSOL	-128	1.96	25.81	-1301.48	25.90	-48.41	1.62	67.93	3.21
GBELE	-229	0.31	10.13	-2214.71	9.53	-88.36	1.21	12.76	3.29
GBTOT	-66	6.97	23.11	-615.74	22.63	-27.52	4.34	-23.72	3.17

PARAMETER		COMPLEX		RECEPTOR		LIGAND		DELTA	
5- 2-	MEA	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-111	.6.43	28.44	-1106.53	26.94	-5.78	1.79	-4.11	3.92
VDW	-11	.8.95	13.62	-113.24	14.44	14.09	1.65	-19.80	2.56
INT	172	27.68	23.22	1688.69	23.14	38.99	4.85	-0.00	0.00
GAS	49	92.30	36.81	468.92	36.13	47.30	5.05	-23.91	4.22
PBSUR	4	2.65	0.89	41.55	1.05	4.76	0.04	-3.65	0.30
PBCAL	-108	39.99	29.53	-1070.30	28.20	-29.14	1.77	9.45	4.12
PBSOL	-104	17.34	29.03	-1028.76	27.54	-24.38	1.76	5.80	4.13
PBELE	-220	6.42	12.94	-2176.84	13.32	-34.92	1.01	5.34	1.47
PBTOT	-55	55.04	22.15	-559.84	21.79	22.92	4.86	-18.12	2.21
GBSUR	2	26.58	0.67	26.03	0.78	2.61	0.02	-2.06	0.25
GB	-114	1.52	27.71	-1120.75	26.44	-31.73	1.62	10.97	3.81
GBSOL	-111	4.94	27.35	-1094.72	25.98	-29.13	1.61	8.91	3.84
GBELE	-225	57.94	9.89	-2227.29	10.01	-37.51	0.86	6.86	0.97
GBTOT	-62	22.64	22.21	-625.80	22.01	18.17	4.92	-15.01	2.21

Ta	b	le	S1	0

PARAMETER	COMPLEX		RECEPTOR		LIGAND		DELTA	
	MEAN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-1183.52	49.43	-1137.29	49.16	-42.96	3.84	-3.26	3.37
VDW	-127.02	12.90	-115.08	12.37	21.20	2.35	-33.14	2.37
INT	1735.39	22.44	1698.72	21.82	36.68	4.44	-0.00	0.00
GAS	424.85	54.42	446.34	54.16	14.91	5.55	-36.40	3.83
PBSUR	38.78	0.93	39.94	1.09	3.42	0.03	-4.59	0.30
PBCAL	-1097.53	48.32	-1075.97	48.34	-42.88	2.86	21.32	3.61
PBSOL	-1058.76	47.73	-1036.03	47.54	-39.45	2.86	16.73	3.55
PBELE	-2281.05	13.46	-2213.27	13.14	-85.84	1.32	18.06	2.32
PBTOT	-633.91	24.55	-589.69	23.90	-24.54	4.23	-19.67	2.55
GBSUR	24.36	0.63	25.31	0.62	2.03	0.01	-2.98	0.19
GB	-1143.08	45.34	-1118.42	46.27	-47.17	3.15	22.51	3.94
GBSOL	-1118.73	44.95	-1093.11	45.84	-45.14	3.14	19.53	3.90
GBELE	-2326.60	11.20	-2255.72	10.67	-90.14	1.24	19.25	2.18
GBTOT	-693.88	24.03	-646.77	23.22	-30.24	4.39	-16.87	2.31

PARAME	TER	DIME	R	CHAIN	A	CHAIN	В	DEI	TA
10	MEA	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-107	7.91	35.25	-530.68	15.42	-499.13	25.07	-48.09	18.44
VDW	-11	5.00	10.94	3.38	7.60	8.86	6.81	-127.24	6.20
INT	168	3.32	22.32	840.51	15.86	842.80	16.46	-0.00	0.00
GAS	49	0.41	38.79	313.22	21.51	352.53	27.56	-175.34	20.11
PBSUR	4	1.35	0.66	29.25	0.69	31.67	0.30	-19.57	0.60
PBCAL	-113	33.05	31.16	-594.05	13.40	-620.06	22.28	81.05	17.04
PBSOL	-109	91.70	30.89	-564.79	13.35	-588.39	22.19	61.48	16.77
PBELE	-221	0.95	12.01	-1124.72	7.05	-1119.19	6.55	32.96	6.38
PBTOT	-60	1.29	21.97	-251.57	16.36	-235.86	15.87	-113.86	7.60
GBSUR	2	5.54	0.46	17.78	0.40	19.02	0.19	-11.27	0.44
GB	-117	1.16	32.14	-612.85	13.51	-643.54	22.84	85.23	16.97
GBSOL	-114	15.63	31.97	-595.07	13.41	-624.52	22.82	73.96	16.78
GBELE	-224	9.07	9.49	-1143.53	6.15	-1142.67	5.79	37.13	4.80
GBTOT	-65	5.22	21.15	-281.85	15.98	-271.99	16.04	-101.38	6.63

Tal	ble	S12
-----	-----	-----

PARAM	ETER	DIM	IER	CHAIN	A	CHAI	N B	DEI	TA
	MEA	N	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-960	.95	31.53	-434.27	33.76	-500.47	23.06	-26.21	21.87
VDW	-80	.32	10.84	12.65	7.51	2.74	7.43	-95.70	6.13
INT	1691	.43	23.32	843.07	15.91	848.36	16.37	-0.00	0.00
GAS	650	.16	38.16	421.45	33.37	350.63	29.55	-121.92	21.19
PBSUR	45	. 62	0.99	32.01	0.53	29.87	0.79	-16.26	0.82
PBCAL	-1256	.26	31.51	-679.96	29.67	-622.91	22.64	46.61	20.81
PBSOL	-1210	.64	31.27	-647.95	29.81	-593.03	22.27	30.35	20.88
PBELE	-2217	.21	11.93	-1114.24	7.64	-1123.37	7.63	20.40	5.66
PBTOT	-560	.48	23.64	-226.50	16.19	-242.41	16.74	-91.57	6.30
GBSUR	29	.38	0.56	19.52	0.32	18.66	0.48	-8.80	0.57
GB	-1293	. 68	30.28	-704.35	30.08	-643.90	22.27	54.58	20.18
GBSO	-1264	.30	30.10	-684.84	30.17	-625.24	22.02	45.78	20.29
GBELE	-2254	.63	10.04	-1138.63	6.74	-1144.37	6.59	28.37	4.53
GBTOT	-614	.14	23.71	-263.39	16.24	-274.61	16.56	-76.14	5.53

PARAM	ETER DIN	MER	CHAI	N A	CHAI	NB	DEI	ATA
	MEAN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-887.98	28.91	-430.82	17.62	-477.85	18.63	20.69	23.01
VDW	-118.86	12.80	-11.67	7.06	1.53	7.29	-108.72	7.02
INT	1691.42	22.31	848.38	16.13	843.03	15.48	0.00	0.00
GAS	684.57	33.66	405.89	22.98	366.71	22.69	-88.03	25.24
PBSUR	38.61	1.30	27.08	0.56	29.25	0.86	-17.72	0.85
PBCAL	-1284.21	25.90	-670.75	14.31	-637.98	15.65	24.52	21.60
PBSOL	-1245.60	25.77	-643.67	14.32	-608.74	15.81	6.81	21.44
PBELE	-2172.19	12.60	-1101.57	7.81	-1115.84	6.66	45.22	6.59
PBTOT	-561.02	22.81	-237.78	16.61	-242.03	15.48	-81.22	7.81
GBSUR	25.25	0.92	16.95	0.26	18.05	0.45	-9.74	0.59
GB	-1326.73	25.87	-694.11	15.13	-659.08	16.56	26.46	20.73
GBSOL	-1301.48	25.90	-677.16	15.11	-641.03	16.60	16.72	20.50
GBELE	-2214.71	9.53	-1124.93	6.30	-1136.93	5.75	47.15	4.82
GBTOT	-616.91	22.60	-271.27	16.31	-274.32	15.62	-71.31	8.12

PARAME	TER	DIME	R	CHAIN A		CHAIN B		DELTA	
	MEA	AN	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-110	06.53	26.94	-509.88	18.01	-585.78	14.61	-10.87	17.94
VDW	-11	13.24	14.44	15.57	7.11	2.96	8.54	-131.76	7.69
INT	168	88.69	23.14	842.15	16.12	846.5	16.05	0.00	0.00
GAS	46	58.92	36.13	347.84	23.44	263.71	19.18	-142.63	21.45
PBSUR	4	41.55	1.05	32.82	0.40	29.14	0.61	-20.42	0.85
PBCAL	-107	70.37	28.20	-606.96	15.81	-532.78	12.08	69.37	20.17
PBSOL	-102	28.82	27.54	-574.14	15.62	-503.64	11.91	48.96	19.69
PBELE	-217	76.90	13.32	-1116.85	6.11	-1118.56	7.24	58.50	9.45
PBTOT	-55	59.90	21.79	-226.30	15.46	-239.92	14.92	-93.68	8.38
GBSUR	2	26.03	0.78	19.72	0.24	18.11	0.48	-11.80	0.56
GB	-112	20.75	26.44	-631.39	16.79	-552.33	12.88	62.97	17.51
GBSOL	-109	94.72	25.98	-611.67	16.68	-534.22	12.77	51.16	17.22
GBELE	-222	27.29	10.01	-1141.27	5.69	-1138.11	6.43	52.10	5.28
GBTOT	-62	25.80	22.01	-263.83	15.46	-270.51	15.16	-91.47	6.98

Table S15	Та	ble	S15
-----------	----	-----	-----

PARAME	TER	DIME	R	CHAI	N A	CHAI	N B	DELI	Ά
	MEA	4N	STD	MEAN	STD	MEAN	STD	MEAN	STD
ELE	-113	37.29	49.16	-457.79	14.47	-574.44	43.32	-105.06	20.28
VDW	-11	15.77	12.34	-5.86	7.75	-0.20	7.59	-109.71	5.10
INT	169	97.96	21.92	850.85	15.76	847.10	15.66	-0.00	0.00
GAS	44	14.90	54.25	387.20	20.84	272.46	45.67	-214.77	19.33
PBSUR	3	39.94	1.09	28.46	0.74	28.26	0.49	-16.78	0.37
PBCAL	-107	75.99	48.33	-662.32	12.29	-547.60	40.19	133.93	17.21
PBSOL	-103	36.04	47.52	-633.86	12.02	-519.33	39.98	117.15	17.20
PBELE	-221	13.28	13.16	-1120.11	6.83	-1122.04	7.89	28.87	8.85
PBTOT	-59	91.15	24.13	-246.65	16.04	-246.87	16.52	-97.62	9.09
GBSUR	2	25.31	0.62	17.74	0.37	17.43	0.35	-9.87	0.27
GB	-111	18.42	46.27	-683.68	12.54	-572.15	40.95	137.41	17.50
GBSOL	-109	93.11	45.84	-665.94	12.40	-554.72	40.72	127.54	17.49
GBELE	-225	55.72	10.67	-1141.47	6.46	-1146.59	6.51	32.34	5.63
GBTOT	-64	18.22	23.48	-278.74	16.18	-282.25	16.28	-87.23	5.76

STD = Standard deviation; ELE = Electrostatic energy as calculated by the Molecular Mechanics (MM) force field; VDW = Van der Waals contribution from MM; INT = Internal energy arising from bond, angle, and dihedral terms in the MM force field (this term always amounts to zero in the single trajectory approach); GAS = Total gas phase energy (sum of ELE, VDW, and INT); PBSUR/GBSUR = Non-polar contribution to the solvation free energy calculated by an empirical model; PBCAL/GB = The electrostatic contribution to the solvation free energy calculated by PB or GB, respectively; PBSOL/GBSOL = Sum of non-polar and polar contributions to solvation; PBELE/GBELE = Sum of the electrostatic solvation free energy and MM electrostatic energy; PBTOT/GBTOT = Final estimated binding free energy calculated from the terms above (kcal mol⁻¹); DELTA = Equal to mean (complex) – [mean (ligand) + mean (receptor)]