Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Chetracins E and F, Cytotoxic Epipolythiodioxopiperazines from the Marine-derived Fungus *Acrostalagmus luteoalbus* HDN13-530

Guihong Yu, ^a Yanjuan Wang, ^a Rilei Yu, ^a Yanyan Feng, ^a Lu Wang, ^a Qian Che, ^a Qianqun

Gu,^a Dehai Li, ^{a, b} Jing Li, ^{a, b} and Tianjiao Zhu^{a, *}

^a Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and

Pharmacy, Ocean University of China, Qingdao 266003, P. R. China

^b Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine

Science and Technology, Qingdao, 266237, P. R. China

*To whom correspondence should be addressed. Tel: 0086-532-82031632 and Fax: 0086-532-82033054. E-mail: zhutj@ouc.edu.cn

List of Supporting Information

- ➢ M+2 negative ion isotope peaks of many sulfur-containing metabolites in fermentation extract of *A. luteoalbus* HDN13-530 (Figure S1).
- > 13 C NMR and 1 H NMR Spectroscopic data of **1a** (Table S1).
- ➤ Key HMBC correlations of **1a** (Figure S2).
- ▶ HPLC analysis of conversions of **2** to **3** and standard samples (Figure S3);
- > 1D, 2D NMR, NOESY and HRESIMS spectra of chetracin E (1) (Figure S4-S10);
- > 1D, 2D NMR, NOESY and HRESIMS spectra of chetracin F (2) (Figure S11-S17);
- > 1D, 2D NMR, NOESY and HRESIMS spectra of **1a** (Figure S18-S23).
- ▶ IR spectra of chetracin E (1), chetracin F (2) and 1a (Figure S24-S26).

Figure S1. M+2 negative ion isotope peaks of many sulfur-containing metabolites in fermentation extract of *A. luteoalbus* HDN13-530.

Table S1. ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) Spectroscopic Data of **1a** in DMSO- d_6 .

position	1a (major conformor)		1a (minor symmetric conformor)	
	$\delta_{ m C}$	$\delta_{\rm H}$ (J in Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (J in Hz)
1	164.3, qC		165.3, qC	
3	72.1, qC		71.4, qC	
4	162.4, qC		162.3, qC	
5a	79.6, CH	6.29 d (1.9)	80.5, CH	5.02 d (2.1)
ба	151.2, qC		151.6, qC	
7	107.8, CH	6.05-6.09 ^a	108.0, CH	6.27 d (7.7)
8	128.6, CH	6.60-6.64 ^{<i>a</i>}	128.7, CH	6.86-6.90 ^{<i>a</i>}
9	116.6, CH	6.15-6.18 ^a	117.7, CH	6.37-6.42 ^{<i>a</i>}
10	121.8, CH	7.20 d (8.2)	126.3, CH	6.65 d (7.7)
10a	130.1, qC		130.1, qC	
10b	63.9, qC		66.8, qC	
11	82.2, CH	4.73 d (9.5)	82.1, CH	5.07 d (7.1)
11a	72.0, qC		73.0, qC	
12	28.2, CH ₃	2.88 s	28.4, CH ₃	2.95s
13	63.4, CH ₂	4.17 dd (11.8, 6.0)	63.2, CH ₂	4.17 dd (11.8, 6.0)
		3.61-3.69 ^a		3.98 dd (11.6, 6.2)
3-SCH ₃	13.3, CH ₃	2.16 s	13.3, CH ₃	2.08 s

11a-SCH ₃	15.8, CH ₃	1.82 s	15.9, CH ₃	1.82 s
6-NH		6.85 s		6.67 s
11-OH		7.25 brs		5.99 d (7.2)
13-OH		4.93 t (7.0)		5.10 t (4.5)
1'	163.9, qC		164.6, qC	
3'	67.8, qC		68.3, qC	
4'	163.6, qC		163.6, qC	
5a'	79.9, CH	6.33 d (1.9)	80.3, CH	5.02 d (2.1)
6a'	151.2, qC		151.7, qC	
7'	107.9, CH	6.05-6.09 ^{<i>a</i>}	108.2, CH	6.31 d (7.8)
8'	128.7, CH	6.60-6.64 ^{<i>a</i>}	128.7, CH	6.86-6.90 ^{<i>a</i>}
9'	116.6, CH	6.15-6.18 ^{<i>a</i>}	117.2, CH	6.37-6.42 ^{<i>a</i>}
10'	121.8, CH	7.16 d (8.2)	127.3, CH	7.71 d (7.7)
10a′	129.8, qC		130.5, qC	
10b′	63.4, qC		66.5, qC	
11′	81.7, CH	4.83 d (4.8)	81.6, CH	5.13 d (7.0)
11a'	72.1, qC		72.8, qC	
12'	28.2, CH ₃	2.93 s	29.0, CH ₃	2.95 s
13'	24.7, CH ₃	1.74 s	25.1, CH ₃	1.65 s
3′-SCH ₃	14.5, CH ₃	2.16 s	14.3, CH ₃	2.06 s
11a'-SCH ₃	16.0, CH ₃	1.82 s	15.8, CH ₃	1.81 s
6'-NH		6.85 s		6.64 s
11'-OH		7.05 brs		5.54 d (6.9)

^{*a*} Signals were overlapped.

Figure S2. Key HMBC correlations of **1a**.

Figure S3. HPLC analysis of conversions of **2** to **3** and standard samples.

Note: a: conversion of 2 to 3 in DMSO after two weeks; b: standard sample of 3; c: standard sample of 2. The data were collected by HPLC with MeOH (with 1/1000 formic acid) and water (with 1/1000 formic acid) (0-2 min: 50:50, 2-30 min: from 50:50 to 100:0, 30-35: 100:0, 35-36 min: from 100:0 to 50:50, 36-40 min: 50:50).

Figure S4. ¹H NMR spectrum (500 MHz) of chetracin E (1) in DMSO

Figure S5. ¹³C NMR spectrum (125 MHz) of chetracin E (1) in DMSO

Figure S7. COSY spectrum of chetracin E (1)

Figure S8. HMBC spectrum of chetracin E (1)

Figure S9. NOESY spectrum of chetracin E (1)

Figure S10. HRESIMS spectrum of chetracin E (1)

Figure S11. ¹H NMR spectrum (500 MHz) of chetracin F (2) in DMSO

Figure S12. ¹³C NMR spectrum (125 MHz) of chetracin F (2) in DMSO

Figure S13. HMQC spectrum of chetracin F (2)

Figure S14. COSY spectrum of chetracin F (2)

Figure S15. HMBC spectrum of chetracin F (2)

Figure S16. NOESY spectrum of chetracin F (2)

Figure S17. HRESIMS spectrum of chetracin F (2)

Figure S18. ¹H NMR spectrum (500 MHz) of **1a** in DMSO

Figure S19. ¹³C NMR spectrum (125 MHz) of **1a** in DMSO

Figure S20. HMQC spectrum of **1a**

Figure S21. HMBC spectrum of **1a**

Figure S23. HRESIMS spectrum of 1a

Figure S24. IR spectrum of chetracin E (1)

Figure S25. IR spectrum of chetracin F (2)

Figure S26. IR spectrum of 1a

