Supporting Information for

Self-generated Hollow NaTi₂(PO₄)₃ Nanocubes Decorated with Graphene as a

Large Capacity and Long Lifetime Anode for Sodium-ion Batteries

Shaocheng Ye^a, Zhihong Li^a, Tianbing Song^a, Danhong Cheng^a,

Qunjie Xu^a ,Haimei Liu ^a, Yonggang Wang^b

Fig.S1. SEM images of pure NaTi₂(PO₄)₃ with hydrothermal time of 9hs.

Fig.S2. a, b, c) TEM images of $NaTi_2(PO_4)_3$ 1h; d, e, f) showing the $NaTi_2(PO_4)_3$ 6h; g)TEM image of $NaTi_2(PO_4)_3$ 1h and the corresponding EDX mapping of Na (blue), Ti(purlish red), P (green), O (red).

Fig. S3. a) The TG curve of the $NaTi_2(PO_4)_3$ @rGO 6h sample ; b) Raman spectra of the $NaTi_2(PO_4)_3$ /rGO 1h and $NaTi_2(PO_4)_3$ /rGO 6h composites; c) The TG curve of the pure $NaTi_2(PO_4)_3$ sample.

Fig.S4. a) N₂ absorption–desorption isotherms of the NaTi₂(PO₄)₃ 1h and NaTi₂(PO₄)₃/rGO 1h.

Fig.S5. a) XPS survey spectra of the $NaTi_2(PO_4)_3$ 6h and $NaTi_2(PO_4)_3$ @rGO 6h; a, b) Deconvoluted Ti2p peaks of the $NaTi_2(PO_4)_3$ 6h and the $NaTi_2(PO_4)_3$ @rGO 6h composite.

Fig.S6. Cycling performance at 1C of pure $NaTi_2(PO_4)_3$ prepared with hydrothermal times of 1h,3h, and 6h .

Electrode definition	Specific capacity (mAh g ⁻¹)	Cycle performance	References
H-NTP NC@rGO	128mAh g ⁻¹ at 1C	120mAh g ⁻¹ after 150 cycles at 1C 103mAh g-1 after	This work
	3C	500 cycles at 3C	
High rate performance of NTP@rGO	112 mAh g ⁻¹ at 1C	100 mAh g ⁻¹ after 150 cycles at 1C	S1
Porous NTP@rGO	138 mAh g ⁻¹ at 1C	101 mAh g ⁻¹ after 200 cycles at 1C	S2
Self-assembled wafer-like porousNTP decorated with hierarchical carbon	114mAh g ⁻¹ at 2C	92 mAh g ⁻¹ after 300 cycles at 2C	S3
Facile solvothermal synthesis of NaTi2(PO4)3/C porous	85mAh g ⁻¹ at 10C	70mAh g ⁻¹ after 120 cycles at 10C	S4
NTP Nanocubes with Synergistic Coating of Carbon and Rutile TiO ₂	86 mAh g ⁻¹ at 5C	77.8 mAh g ⁻¹ after 2000 cycles at 5C	S5

Table S1. Comparison of electrochemical performace of different NTP materials

- S1. J. Song, S. Park, J. Gim, V. Mathew, S. Kim, J. Jo, S. Kim and J. Kim, J. Mater. Chem. A, 2016, 4, 7815-7822.
- S2 C. Wu, P. Kopold, Y. Ding, P. AKen, J. Maier, Y. Yu, ACS Nano, 2015, 9 (6), 6610–6618.
- S3 B. Zhao, Q. Wang, S. Zhang and C. Deng, J. Mater. Chem. A, 2015, 3, 12089-12096.
- S4 Z. Huang, L. Liu, L. Yi, W. Xiao, M. Li, Q. Zhou, G. Guo, X. Chen, H. Shu, X. Yang, X. Wang. J. Power Sources. 2016.325, 474-481.
- S5 J. Yang, H. Wang, P. Hu, J. Qi, L. Guo, L. Wang. Small. 2015, 11, 3744-3749.