Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Co-production of microbial oil and exopolysaccharide by the oleaginous yeast

Sporidiobolus pararoseus grown in fed-batch culture

Mei Han^{1, 2}, Jian-Zhong Xu^{1, *}, Zhen-Min Liu², He Qian³, Wei-Guo Zhang¹

1: The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi 214122, Jiangsu Province, China

2: State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd, 1518#

Jiangchang West Road, Shanghai 200436, China

3: School of food science and technology, Jiangnan University, 1800[#] Lihu Road, Wuxi-214122, Jiangsu Province, China

* Corresponding authors:

Jian-Zhong Xu; E-mail: xujianzhong@jiangnan.edu.cn; Tel: +86-510-85329312; Fax: +86-510-85329312

1 Thin layer chromatography

The preparation of samples was carried out according to the reports of Han et al.¹. When analyzing the fat soluble nutrients in *S. pararoseus* oil by TLC, extracts were spotted on a silica gel plate (60GF254 plate; Amresco, Ohio, USA) with benzinum:ethyl acetate:acetone (1:1:1, v/v) solvent as developing solvent. The standard sample was used to compare spots with extracts.

2 The separation of the fat soluble nutrients in *S. pararoseus* oil by High-performance chromatography (HPLC)

The major components were quantified by a high-performance liquid chromatopgraph (HPLC; Hitachi L-2000, Japan) equipped with a photodiode array detector and using C_{18} column (25 mm×4.6 mm; 4.6 µm particle size; Agilent, USA). Isocratic elution analysis was carried out with acetonitrile:tetrahydrofuran=60:40 described in our laboratory previous study².

3 The component identification by mass spectrometry (HPLC-MS)

The identifications of oils and carotenoids were analyzed by a mass spectrometry (MS) equipped with a Waters ACQUITY PDA detector and BEH C_{18} column (2.1 mm×100 mm and filler diameter is 1.7 μ m; Waters, USA). The detail of operation was carried out according to the description of Han et al.³.

Yeast strain	Molecular weight (kDa)	t Monosaccharide composition	References
Sporobolomyces salmonicolor AL_1	>1000	54.1% of glucose, 42.6% of mannose, and 3.3% of fucose	4, 5
<i>Cryptococcus laurentii</i> AL ₁₀₀	4.2	61.1% of arabinose, 15.0% of mannose, 12.0% of glucose, 5.9% of glactose, and 2.8% of rhamnose	6
Cryptococcus flavus A51	1010	55.1% of mannose, 26.1% of glucose, 9.60% of xylose, and 1.90% of galactose	7
Rhodotorula acheniorum MC	1	Component 1: 92.8% of mannose Component 2: 90.6% of mannose	8
Rhodotorula glutinis KCTC 7989	100-380	85% of neutral sugars (mannose:fucose:glucose:galactose=67:2:1:1) and 15% of uronic acid	9
Pichia (Hansenula) holstii NRRL Y- Sporidiobolus pararoseus JD-2		mannose:phosphorus:potassium=5:1:1 galactose:glucose:mannose=16:8:1	10, 11 This study

Table S1 The composition of exopolysaccharide produced by different yeasts

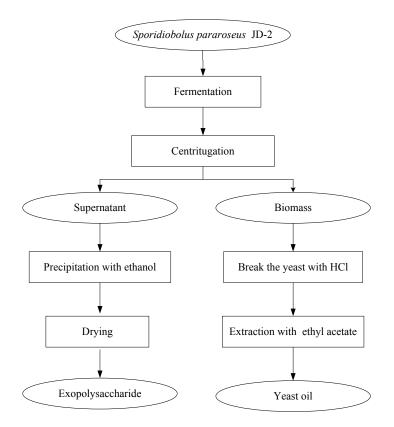


Figure **S1.** The scheme for co-production of exopolysaccharide and oil by *S. pararoseus* JD-2.

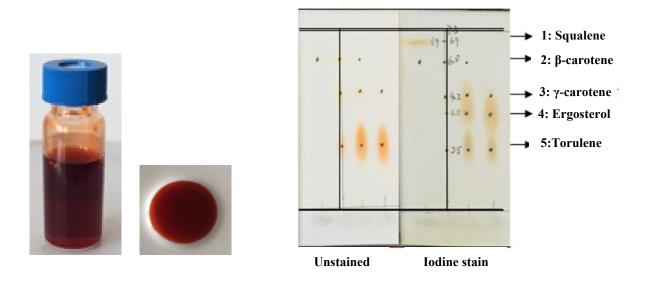


Figure S2. The sample and its thin-layer chromatography of oil produced by *S. pararoseus* JD-2.

•

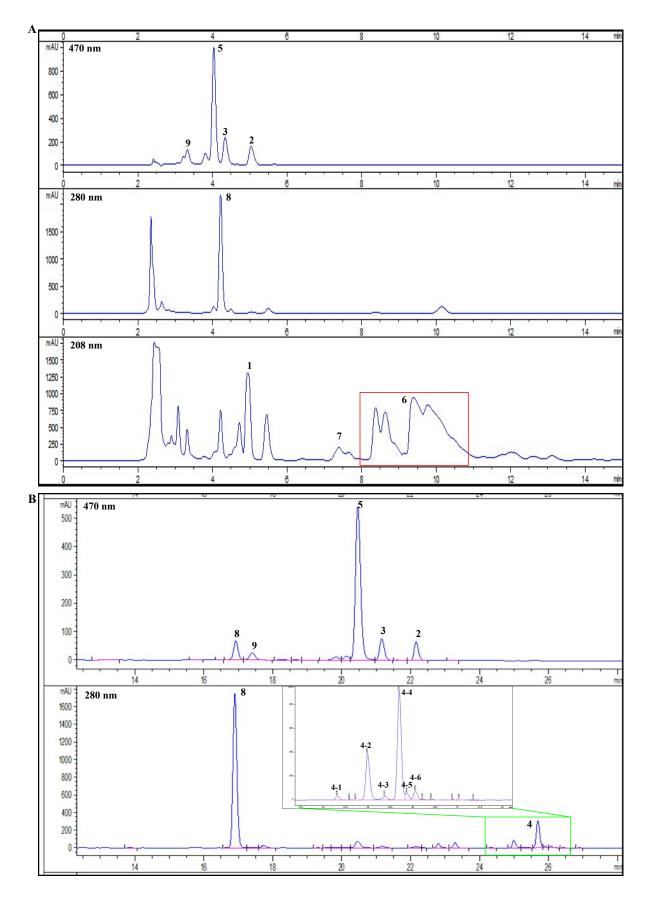


Figure S3. The main compositions of oil produced by S. pararoseus JD-2 separated by isocratic elution (A)

and by gradient elution (B). Chromatographic peaks: peak 1 - Squalene; peak 2 - β -carotene; peak 3 - γ carotene; peak 4-1~4-6 - Ergosterol ester; peak 5 - Torulene; peak 6 - Triglyceride; peak 7 - Free fatty acid; peak 8 - Ergosterol; peak 9 - Torularhodin. The red frame represents the same composition, and the springgreen frame represents data amplification.

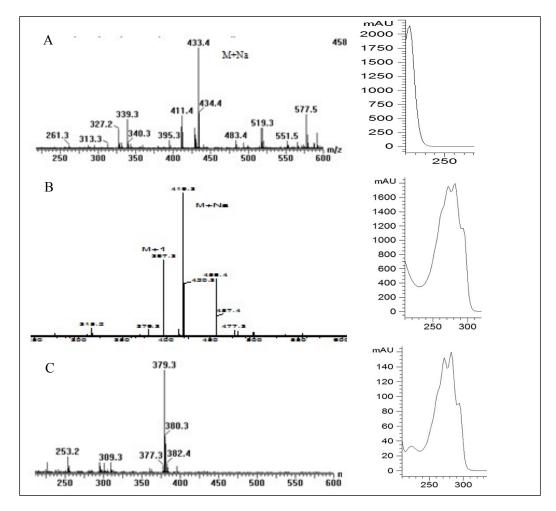


Figure S4. HPLC-MS and UV spectrum of squalene (A), ergosterol (B) and ergosterol esters (C).

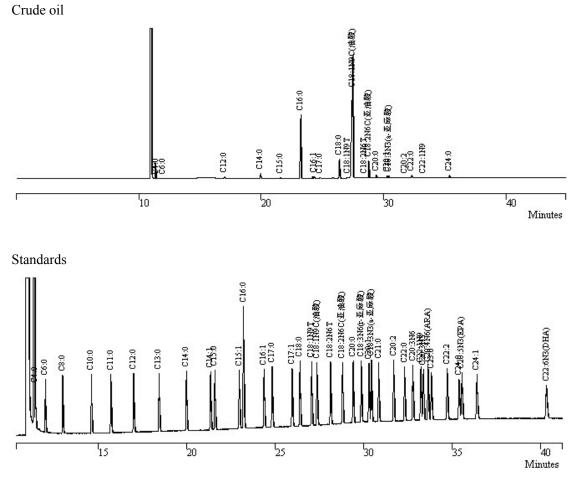


Figure S5. The main compositions of fat soluble nutrients in S. pararoseus oil separated by HPLC.

Supplementary References

- 1. M. Han, Z. Y. Xu, C. Du, H. Qian and W. G. Zhang, *Bioproc Biosyst Eng*, 2016, **39**, 1425-1433.
- 2. Q. Shi, H. Wang, C. Du, W. Zhang and H. Qian, *Anal. Sci.*, 2013, **29**, 997-1002.
- 3. M. Han, Q. He and W. G. Zhang, *Prep Biochem Biotechnol*, 2012, **42**, 293-303.
- 4. S. Dimitrova, K. Pavlova, L. Lukanov, E. Korotkova, E. Petrova, P. Zagorchev and M. Kuncheva, *Appl Biochem Biotech*, 2013, **169**, 301-311.
- A. Poli, G. Anzelmo, G. Tommonaro, K. Pavlova, A. Casaburi and B. Nicolaus, *Folia Microbiol*, 2010, 55, 576-581.
- 6. K. Pavlova, S. Rusinova-Videva, M. Kuncheva, M. Kratchanova, M. Gocheva and S. Dimitrova, *Appl Biochem Biotech*, 2011, **163**, 1038-1052.
- 7. K. Pavlova, I. Panchev, M. Krachanova and M. Gocheva, *Folia Microbiol*, 2009, 54, 343-348.
- 8. K. Pavlova and D. Grigorova, *Food Res Int*, 1999, **32**, 473-477.
- 9. D. H. Cho, H. J. Chae and E. Y. Kim, *Appl Biochem Biotech*, 2001, **95**, 183-193.
- 10. A. Jeanes, J. E. Pittsley, P. R. Watson and R. J. Dimler, Arch Biochem Biophys, 1961, 92, 343-350.
- 11. L. A. Parolis, H. Parolis, L. Kenne, M. Meldal and K. Bock, Carbohydr. Res., 1998, 309, 77-87.