Supporting information

For

1-Alkenyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids: novel and low-viscosity ionic liquid electrolytes for dye-sensitized solar cells.

Phuong Tuyet Nguyen^a*, Trang Ngoc Nguyen^a, Vinh Son Nguyen^a, Hai Truong Nguyen^b, Dung Kim Thi Ngo^b and Phuong Hoang Tran^b*

^aDepartment of Applied Inorganic Chemistry, Faculty of Chemistry, University of Sciences, Viet Nam National University, Ho Chi Minh City 70000, Viet Nam.

^bDepartment of Organic Chemistry, Faculty of Chemistry, University of Sciences, Viet Nam National University, Ho Chi Minh City 70000, Viet Nam.

Corresponding author: <u>ntphuong@hcmus.edu.vn</u> (Phuong Tuyet Nguyen), <u>thphuong@hcmus.edu.vn</u> (Phuong Hoang Tran)

Table of contents

Section S1. Syntheses of materials				
Section S2. The comparison for photovoltaic performance of DSCs applied	S2-S3			
different types of electrolyte solutions based on ionic liquids				
Section S3. Spectral data	S3-S16			
Section S4. References	S17			

Section S1. Syntheses of Materials

Chemicals and supplies.

1-Methylimidazole (*ReagentPlus*[®], 99%), Allyl bromide (reagent grade, 97%), 4-bromo-1butene (assay, 97%), 5-bromo-1-pentene (assay, 95%), lithium trifluoromethansulfonate (assay, 96%), iodomethane (grade analytical standard), iodoethane (assay, 99%), 1iodopropane (assay, 99%) were obtained from Sigma-Aldrich. Celite was obtained from Merck. Acetonitrile (purity \geq 99.5%), diethyl ether (\geq 95%), chloroform (purity \geq 99%) were obtained from Xilong Chemical Co., Ltd (China). Chloroform-*d*, 99.8 Atom %D, stab. with Ag was obtained from Armar (Switzerland).

All starting materials, reagent and solvents were used without further purification.

Analytical techniques.

The ¹H and ¹³C NMR spectra were recorded on a Bruker Advance 500 instruments using CDCl₃ as solvent and solvent peaks or TMS as internal standards. Thermal gravimetric analysis (TGA) was measured on a TA Q500 thermal analysis system with the sample held in a platinum pan in a continuous airflow. Vicosity of ionic liquids was performed using Brookfield DV-III programmable Rheometer (at room temperature ~30 °C). The ionic conductivity of ILs was measured by using Conductimeter OAKION CON 2700. HRMS (ESI) data were recorded on Bruker micrOTOF-QII MS at 80 eV.

Section S2. The comparison for photovoltaic performance of DSCs applied different types of electrolyte solutions based on ionic liquids

Table S1. Photovoltaic performance of DSCs applied different types of electrolyte solutions based on ionic liquids.

Entry	Composition of IL electrolyte	J _{SC} (mA/cm ²)	V _{OC} (V)	Fill factor	Efficiency (%)	Light Intensity (mW/cm ²)	Dye
1	10% HMImI, 90% EMImTf ₂ N, 5 mM I ₂ ¹	11.8	0.57	0.72	-	100	N-3
1	10% HMImI, 90% EMImTfO, 5mM I ₂ ¹	9.5	0.23	0.69	-	100	N-3
2	0.9M DMHImI, 30 mM I ₂ in EMImTFSI ²	0.9	0.50	0.80	0.36	100	N-3
2	0.9M DMHImI, 30 mM I ₂ in EMImF [•] 2.3HF ²	5.8	0.65	0.56	2.1	100	N-3
	0.1M I ₂ , 0.45M NMBI in PMII and EMIDCN (13:7 v/v) ³	10.4	0.74	0.74	5.7	100	Z-907
3	0.1M I ₂ , 0.1M LiI, 0.45M NMBI in PMII and EMIDCN (13:7 v/v) ³	12.8	0.71	0.73	6.6	100	Z-907
	0.1M I ₂ , 0.1M LiI, 0.45M NMBI in PMII and EMIDCN (13:7 v/v) ³	-	0.68	-	5.0	100	N-719
4	0.2M I ₂ , 0.14M GuSCN, 0.5M TBP in PMII and EMINCS (13:7 v/v) ⁴	11.4	0.74	0.76	6.4	100	Z-907
5	[I ⁻ :I ₂ =10:1], [I ⁻ +I ₃ ⁻]=2M, 1M TBP, 0.5M LiI in EMImDCA ⁵	11.8	0.73	0.63	5.5	100	N-3
	[I ⁻ :I ₂ =10:1], [I ⁻ +I ₃ ⁻]=1.5M, 1M TBP, 0.1M LiI in EMImTFSI ⁵	12	0.63	0.59	4.5	100	N-3
6	I ₂ , 0.5M NMBI in PMII and EMImTCM $(1:1 \text{ v/v})^6$	12.81	0.75	0.76	7.4	100	Z- 907Na
7	0.2M I ₂ , 0.5M NMBI, 0.1M GuSCN in PMII and EMIB(CN) ₄ (13:7 v/v) ⁷	12.7	0.72	0.70	6.4	100	Z- 907Na
8	0.2M I ₂ , 0.1M GuSCN, 0.5M NMBI in PMII and EMIB(CN) ₄ (65:35 v/v) ⁸	14.56	0.71	0.70	7.2	100	K-77
9	0.8M PMII, 0.1M PMIIBr ₂ , 0.1M GuSCN, 0.5M NBMI in y- butyrolactone ⁹	1.3	0.75	0.73	7.3	100	N-3
10	0.6M MVII, 0.06M I ₂ , 0.6M LiI, 0.5M TBP in propylene carbonate ¹⁰	12.19	0.67	0.61	4.98	100	N-3
11	$(Bu_2MeS)I:I_2=100:1^{11}$	0.80	0.55	0.52	2.3	100	N-719
12	0.15M I ₂ , 0.5M TBP, 0.1M GuSCN, PMII and EMIMBF ₄ (1:1 v/v) ¹²	13.67	0.63	0.58	4.99	100	N-3
13	0.3M I ₂ , 1.5M PMII, 0.1M LiI, 0.5M TBP in S ₅₃ TFSI ¹³	8.28	0.64	0.60	3.27	100	N-719
14	0.03M I ₂ , 0.1M GuSCN, 0.5M TBP, 0.6M FIL in acetonitrile and valeronitrile (85:15 v/v) ¹⁴	11.50	0.61	0.73	5.1	30	Z-907

15	T ₂ :EMITCM:PMIT=2:5.6:10, T ₂ = $0.64M^{15}$	10.71	0.66	0.47	3.30	100	N-719
16	2M I ₂ , 2M LiI, PMII and BMISCN (1:0.75 v/v) ¹⁶	6.52	0.62	0.47	1.89	100	N-719
17	0.05M I ₂ , 0.1M LiI, 0.6M butyl substituted imidazolium iodine salt ¹⁷	17.60	0.60	0.49	5.17	100	N-719
18	Our work: 0.05 M I ₂ , 0.1 M PMII, 0.6 M GuNCS, 0.5 M NBB, and [ButMIm]OTf	11.41	0.66	0.65	4.91	100	N719

Section S3. Spectral data

1-Allyl-3-methylimidazolium tetrafluoromethanesulfonate [AMIm](OTf)

¹**H NMR** (500 MHz, CDCl₃) δ 9.62 (s, 1H), 7.42 (s, 1H), 7.33 (s, 1H), 6.01–5.95 (q, J = 10.5 Hz, 17.0 Hz, 1H), 5.46–5.42 (t, J = 8.5 Hz, 2H), 4.88–4.87 (d, J = 6.5 Hz, 2H), 4.00 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 135.9, 127.8, 121.6, 121.0, 119.8, 114.5, 50.3, 34.9. **HRMS (ESI)** *m/z* Calcd for [M]⁺123.0927; Found 123.0971. **Viscosity** (η) (~30 °C): 33.7 cP.

Conductivity (σ_c) (~30 °C): 0.780 (mS.cm⁻¹).

1-Butenyl-3-methylimidazolium tetrafluoromethanesulfonate [ButMIm](OTf)

¹³C NMR (125 MHz, CDCl₃) δ 137.2, 132.2, 123.4, 122.2, 119.6, 116.4, 49.2, 36.5, 34.2.

HRMS (ESI) *m/z* Calcd for [M]⁺ 137.1073; Found 137.1159.

Viscosity (η) (~30 °C): 16.9 cP.

Conductivity (σ_c) (~30 °C): 0.618 (mS.cm⁻¹).

1-Pentenyl-3-methylimidazolium tetrafluoromethanesulfonate [PentMIm](OTf)

¹**H NMR** (500 MHz, CDCl₃) δ 9.88 (s, 1H), 7.34 (s, 1H), 7.44 (s, 1H), 5.70 – 5.62 (m, 2H), 4.96 – 4.89 (q, *J* = 17.0 Hz, 8.0 Hz, 2H), 4.23 – 4.20 (t, J = 2.0 Hz, 1H), 3.98 (s, 3H), 1.95 – 1.92 (m, 4H).

¹³C-NMR (125 MHz, CDCl₃) δ 136.9, 136.0, 123.8, 122.2, 116.3, 49.3, 36.6, 30.0, 29.1.

HRMS (ESI) *m/z* Calcd for [M]⁺ 151.1230; Found 151.1221.

Viscosity (*η*) (~30 °C): 94.4 cP.

Conductivity (σ_c) (~30 °C): 12.910 (mS.cm⁻¹).

¹H NMR, ¹³C NMR, HRMS, viscosity of [AMIm]OTf

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

Rheocalc V2.7

Brookfield Engineering Labs

Math Model: Bingham

Plastic Viscosity: 33,7 cP

Yield Stress: -2,51 D/cm²

Confidence of Fit: 95,0 %

File: F:\24-6-15\AMIM.DB

Test Date: 25/06/2015 Test Time: 7:48:16 SA Sample Name: AMim

Model: RV Spindle: CP40

#	Viscosity (cP)	Speed (RPM)	% Torque (%)	Shear Stress (D/cm²)	Shear Rate (1/sec)	Temperature (°C)	Time Interval (mm:ss.t)
1	34,01	5,00	5,2	12,75	37,50	30,1	00:30,
2	35,97	10,00	11,0	26,98	75,00	30,0	00:30,
3	30,96	15,00	14,2	34,83	112,50	30,0	00:30,
4	30,41	20,00	18,6	45,62	150,00	30,0	00:30,
5	30,61	25,00	23,4	57,39	187,50	30,2	00:30,
6	31,39	30,00	28,8	70,63	225,00	30,1	00:30,
7	32,05	35,00	34,3	84,12	262,50	30,0	00:30,
8	32,78	40,00	40,1	98,35	300,00	30,1	00:30,
9	33,06	45,00	45,5	111,59	337,50	30,2	00:30,
10	33,68	50,00	51,5	126,30	375,00	30,2	00:30,
11	33,53	55,00	56,4	138,32	412,50	30,0	00:30,
12	33,35	60,00	61,2	150,09	450,00	30,2	00:30,

Notes:

Page 1

25/06/2015 8:03:39 SA

Plastic Viscosity = 33.7
Yield Stress = -2.51
CoF = 95.0

¹H & ¹³C NMR, HR-MS, viscosity of [ButMIm](OTf)

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

Rheocalc V2.7

Brookfield Engineering Labs

Math Model: Bingham

Plastic Viscosity: 16,9 cP

Yield Stress: 0,55 D/cm²

Confidence of Fit: 96,3 %

File: F:\24-6-15\BUTMIM.DB

Test Date: 25/06/2015 Test Time: 7:27:30 SA

Model: RV Spindle: CP40

Sample Name: ButMim

#	Viscosity (cP)	Speed (RPM)	% Torque (%)	Shear Stress (D/cm ²)	Shear Rate (1/sec)	Temperature (°C)	Time Interval (mm:ss.t)
1	15,04	5,00	2,3	5,64	37,50	29,7	00:30,
2	19,29	10,00	5,9	14,47	75,00	29,8	00:30,
3	16,79	15,00	7,7	18,88	112,50	29,8	00:30,
4	16,02	20,00	9,8	24,03	150,00	29,7	00:30,
5	17,13	25,00	13,1	32,13	187,50	29,8	00:30,
6	17,66	30,00	16,2	39,73	225,00	29,9	00:30,
7	17,56	35,00	18,8	46,11	262,50	30,0	00:30,
8	17,58	40,00	21,5	52,73	300,00	30,0	00:30,
9	17,44	45,00	24,0	58,86	337,50	30,0	00:30,
10	17,07	50,00	26,1	64,01	375,00	30,0	00:30,
11	17,06	55,00	28,7	70,39	412,50	30,0	00:30,
12	17,00	60,00	31,2	76,52	450,00	30,0	00:30,
13	17,00	65,00	33,8	82,89	487,50	30,0	00:30,
14	17,00	70,00	36,4	89,27	525,00	30,0	00:30,
15	16,83	75,00	38,6	94,67	562,50	30,0	00:30,

Notes:

Page 1

25/06/2015 8:55:47 SA

Plastic Viscosity = 16,9
Yield Stress = 0,55
CoF = 96,3

¹H & ¹³C NMR, HR-MS, viscosity of [PentMIm]OTf

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

S14

Rheocalc V2.7

Brookfield Engineering Labs

Math Model: Bingham										
Plastic Viscosity: 94.4 cP					Yield Stress: 1.10 D/cm ²					
					Confidence of	Fit: 98.2 %				
File: D:\Do do nhot\Truong Hai (KHTN)\Penmim.DB										
Test Date	Test Date: 3/12/2015 Test Time: 2:04:06 PM Model: RV Spindle: CP40									
Sample I	Sample Name: Penmim									
#	Viscosity (cP)	Speed (RPM)	% Torque (%)	Shear Stress (D/cm²)	Shear Rate (1/sec)	Temperature (°C)	Time Interval (mm:ss.t)			
1	92.21	5.00	14.1	34.58	37.50	31.3	00:30.2			
2	96.47	10.00	29.5	72.35	75.00	31.3	00:30.2			
3	97.45	15.00	44.7	109.63	112.50	31.2	00:30.2			
4	94.83	20.00	58.0	142.25	150.00	31.1	00:30.2			
5	95.88	25.00	73.3	179.77	187.50	31.1	00:30.2			
6	93.96	30.00	86.2	211.41	225.00	31.1	00:30.2			

Notes:

Page 1

3/12/2015 2:09:45 PM

Plastic Viscosity = 94.4
Yield Stress = 1.10
CoF = 98.2

References

- 1. N. Papageorgiou, J. Electrochem. Soc., 1996, 143, 3099-3108.
- 2. H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito and Y. Miyazaki, *Chem. Lett.*, 2001, **30**, 26-27.
- 3. P. Wang, S. M. Zakeeruddin, J.-E. Moser and M. Grätzel, *J. Physic. Chem. B*, 2003, **107**, 13280-13285.
- 4. P. Wang, S. M. Zakeeruddin, R. Humphry-Baker and M. Grätzel, *Chem. Mater.*, 2004, **16**, 2694-2696.
- 5. R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M. A. B. H. Susan, N. Tanabe and M. Watanabe, *J. Photochem. Photobiol. A: Chem.*, 2004, **164**, 87-92.
- P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin and M. Grätzel, *J. Am. Chem. Soc.*, 2005, 127, 6850-6856.
- 7. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin and M. Grätzel, *J. Am. Chem. Soc.*, 2006, **128**, 7732-7733.
- 8. D. Kuang, C. Klein, Z. Zhang, S. Ito, J. E. Moser, S. M. Zakeeruddin and M. Gratzel, *Small*, 2007, **3**, 2094-2102.
- 9. M. Gorlov, H. Pettersson, A. Hagfeldt and L. Kloo, *Inorg. Chem.*, 2007, **46**, 3566-3575.
- 10. Y. Wang, Y. Sun, B. Song and J. Xi, Sol. Energy Mater. Sol. Cells, 2008, 92, 660-666.
- 11. H. Gamstedt, A. Hagfeldt and L. Kloo, *Polyhedron*, 2009, **28**, 757-762.
- 12. P. Cheng, W. Wang, T. Lan, R. Chen, J. Wang, J. Yu, H. Wu, H. Yang, C. Deng and S. Guo, *J. Photochem. Photobiol. A: Chem.*, 2010, **212**, 147-152.
- 13. L. Guo, X. Pan, M. Wang, C. Zhang, X. Fang, S. Chen and S. Dai, *Solar Energy*, 2011, **85**, 7-11.
- 14. A. Abate, A. Petrozza, V. Roiati, S. Guarnera, H. Snaith, F. Matteucci, G. Lanzani, P. Metrangolo and G. Resnati, *Organic Electronics*, 2012, **13**, 2474-2478.
- 15. H. Wu, Z. Lv, S. Hou, X. Cai, D. Wang, H. Kafafy, Y. Fu, C. Zhang, Z. Chu and D. Zou, *J. Power Sources*, 2013, **221**, 328-333.
- 16. S. M. M. Yusof and W. Z. N. Yahya, *Procedia Engineering*, 2016, 148, 100-105.
- 17. S. Denizalti, A. K. Ali, Ç. Ela, M. Ekmekci and S. Erten-Ela, *Chem. Phys. Lett.*, 2018, **691**, 373-378.