

- 17
- 13

Sample	Textural properties				
	$S_{\rm BET}^{a}[m^2g^{-1}]$	$S_{\text{BET}}^{b}[\text{m}^2\text{g}^{-1}]$	$V_{\rm p}^{\rm d}[{\rm m}^3{\rm g}^{-1}]$	$D_{a}^{d}[nm]$	
LS-NC-600	1322	1088	0.94	2.85	
LS-NC-700	2013	1800	1.17	2.34	
LS-NC-800	2221	1876	1.52	2.74	
LS-NC-900	1986	1610	1.46	2.94	

39 Table. S1 Textural parameters of LS-NC-600, LS-NC-700, LS-NC-800 and LS-NC-900, respectively.

40

41 a) The specific surface areas were calculated using the BET method.

42 b) Micropore surface area calculated from t-plot method.

43 c) The total pore volume was determined from the amount of nitrogen adsorbed at a relative pressure of44 0.99

45 d) Average pore diameter.

46

47

48

49 Table. S2 Summary of reported capacitive performance of the carbon materials.

Biomass precursors	$C_m / F g^{-1}$	Electrolyte	Reference
Algae	234 (at 0.5 A g ⁻¹)	6 M KOH	1
longan shell	322 (at 0.5 A g ⁻¹)	6 M KOH	2
Prawn shells	288 (at 5 A g ⁻¹)	6 M KOH	3
Enteromorpha prolifera	296 (at 0.5 A g ⁻¹)	30 wt% KOH	4
Willow catkin	298 (at 0.5 A g ⁻¹)	6 M KOH	5
Potato	255 (at 0.5 A g ⁻¹)	2 M KOH	6
Rice husk	243 (at 0.05 A g ⁻ 1)	6 M KOH	7
Horseweed	184 (at 0.4 A g ⁻¹)	6 M KOH	8
Lotus stem	360 (at 0.5 A g ⁻¹)	6 M KOH	This work

52 **References:**

- 53 1 Z. Tian, M. Xiang, J. Zhou, L. Hu and J. Cai, *Electrochim. Acta.*, 2016, 211, 225 233.
- 55 2 H. Wei, H. Chen, N. Fu, J. Chen, G. Lan, W. Qian, Y. Liu, H. Lin and S. Han,
 Electrochim. Acta., 2017, 231, 403-411.
- 57 3 F. Gao, J. Qu, Z. Zhao, Z. Wang and J. Qiu, *Electrochim. Acta.*, 2016, 190, 11341141.
- 59 4 X. Gao, X. Wei, J. Zhou, G. Wang, S. Zhuo, Z. Liu, Q. Xue and Z. Yan,
 60 *Electrochim. Acta.*, 2014, 133, 459-466.
- 61 5 Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, Nano Energy., 2016, 19, 165-175.
- 6 G. Ma, Q. Yang, K. Sun, H. Peng, F. Ran, X. Zhao and Z. Lei, *Bioresour. Technol.*,
 2015, 197, 137.
- 64 7 X. He, P. Ling, M. Yu, X. Wang, X. Zhang, M. Zheng, X. He, P. Ling, M. Yu and
 65 X. Wang, *Electrochim. Acta.*, 2013, **105**, 635-641.
- 66 8 L. Yuan, C. Feng, C. Wang, Z. Fu, X. Yang and Y. Tang, J. Mater. Sci., 2016, 51,
- **67 3880-3887**.

51