Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Theoretical Studies on Glycolysis of Poly (ethylene

terephthalate) in Ionic Liquids

Zhaoyang Ju^{a,b}, Weihua Xiao^a, Xingmei Lu^b, Xiaomin Liu^b, Xiaoqian Yao^{b*}, Xiaochun Zhang^b and Suojiang Zhang^{b*}

^a College of Engineering, China Agricultural University, Beijing 100083, P. R. China

^b Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China As predicting the reactive site at molecular surface is of theoretical and practical significance, many prediction methods based on the electrochemical structure of reactants have been proposed such as quantitative molecular surface analysis of electronic potential (ESP). The electrostatic potential surfaces for the most stable geometries of cation, anion, EG and dimer are given in Fig. S1. As is shown, the highly negative region of anion is on the electronegative carboxyl group and the electrostatic potential values of OAc⁻, Ala⁻, Asp⁻, and Ser⁻ are -0.247, -0.236, -0.227, -0.233 a.u., respectively. Because of the symmetrical structure in the N₁₁₁₁⁺ and N₂₂₂₂⁺, the highly positive areas are 0.162 and 0.196 a.u. around the nitrogen. In the imidazolium cations, the highly positive of Amim⁺, C₃mim⁺, Bmim⁺, C₄dmim⁺ are 0.193, 0.192, 0.191 and 0.173 a.u., respectively. The ESP value in dimer which around the electronegative carboxyl group is -0.051 a.u. The most positive and negative ESP values in EG are 0.072, -0.050 a.u, respectively.

Fig. S1 The electrostatic potential surface of Dimer, EG anions and cations.

Fig. S2 Clarification of non-bonding interaction.

Dimer-3 (0.7 kJ/mol)

Dimer-4 (1.2 kJ/mol)

Fig. S3 Conformational isomers of Dimer model compound, and the relative energies to Dimer-1 are labeled in parentheses.

Fig. S4 The optimized configurations of Dimer-OAc-n (n=1-7) at B3LYP/6-31++ G^{**} level. The hydrogen bonds are indicated by dashed lines

Structures	H bonding	Length[Å]	Angle [°]	ΔE (kJ/mol)	ΔΔE (kJ/mol)
Dimer-OAc-1	С3-Н8О62	2.054	160.92	-78.97	0
	C18-H20O61	2.012	175.60		
Der-OAc-2	С3-Н8О62	2.279	168.29	-72.81	6.16
	C18-H20O62	2.085	155.62		
Dimer-OAc-3	С3-Н8О62	2.214	164.20	-75.94	3.03
	C18-H20O62	2.325	151.06		
_	C15-H17O61	2.450	122.81		

Table S1 Hydrogen bonds and interaction energy between model compound and OAc

Fig. S5 The most stable structures of Dimer-Bmim⁺ model compound. (a) the structure of Bmim⁺ (b) indicate the interaction of Dimer-Bmim⁺ with C3-H3...O13 and C2-H2...O13 H-bonds (c) means the interaction of Dimer-Bmim⁺ with C1-H1...O13 and C2-H2...O13 H-bonds; All structures were optimized at the B3LYP/6-31++G** level.

				-	
Structures	H bonding	Length[Å]	Angle [°]	ΔE (kJ/mol)	ΔΔE (kJ/mol)
(b)	С2-Н2…О13	2.002	160.00	-43.27	0
	C1-H1O13	2.785	142.43		
(c)	С2-Н2…О13	2.059	150.78	-42.17	1.1
	С3-Н3-013	2.692	146.84		

Table S2 Hydrogen bonds and interaction energy between model compound and Bmim⁺

Table S3 H-bond lengths and angles of Dimer-anions/cations conformers at the level of B3LYP/6-31++G** and B3LYP-D3/6-311+G**

	B3LYP/6-31+	-+G**		B3LYP-D3/6-	-311+G**	
Structure	H-bond	Length(Å)	Angle (°)	H-bond	Length(Å)	Angle (°)
Dimer-OAc	С3-Н8…О62	2.054	160.92	С3-Н8…О62	2.139	153.56
	C18-H20O61	2.012	175.60	C18-H20O61	2.149	159.71
Dimer-Ala	С3-Н8О62	2.077	160.99	С3-Н8О62	2.141	156.03
	C18-H20O61	2.044	177.27	C18-H20-O61	2.175	176.39
Dimer-Asp	С3-Н8О62	2.106	158.86	С3-Н8О62	2.098	147.98
	C18-H20O61	2.056	176.81	C18-H20-O61	2.208	158.54
Dimer-Ser	С3-Н8О61	2.086	158.86	С3-Н8О61	2.285	146.25
	C18-H20O60	2.043	176.81	C18-H20O60	2.109	165.87
Dimer-Cl	С3-Н8С155	2.555	166.21	С3-Н8С155	2.589	152.58
	C18-H20Cl55	2.467	159.61	C18-H20-Cl55	2.533	140.19
Dimer-HSO ₄	С3-Н8О58	2.167	151.95	С3-Н8О58	2.077	152.33
	C18-H20O57	2.214	166.05	C18-H20O57	2.276	146.24
Dimer-N ₁₁₁₁	С55-Н56О24	2.367	145.55	С55-Н56-О24	2.282	143.48
	C68-H70O24	2.357	146.02	C68-H70-O24	2.265	144.21

	C63-H65-O24	2.372	145.37	С63-Н65-О24	2.286	143.38
Dimer-N ₂₂₂₂	С65-Н67-О24	2.419	154.61	С65-Н67-О24	2.306	160.82
	C58-H60-O24	2.359	156.76	C58-H60-O24	2.355	155.31
Dimer-Amim	C2-H2-O24	2.001	155.10	C2-H2-O24	2.008	147.51
	C1-H1-O24	2.593	147.32	C1-H1O24	2.351	149.49
Dimer-C ₃ mim	C2-H2O24	1.996	160.84	C2-H2O24	2.029	145.74
	C1-H1O24	2.813	141.46	C1-H1O24	2.385	141.48
Dimer-Bmim	С2-Н2-О24	2.002	160.00	C2-H2-O24	2.055	143.31
	C1-H1O24	2.785	142.43	C1-H1O24	2.544	120.43
Dimer-C ₄ dmim	С3-Н3-О24	2.258	171.25	С3-Н3-О24	2.145	173.07
	С1-Н1-О24	2.310	171.72	С1-Н1-О24	2.359	142.59

Table S4 The main electron donor-acceptor interactions in the Dimer-anions/cations conformers and their second-order perturbation stabilization energies (E(2)).

Structure	Donor (i)	Acceptor (j)	E(2) kJ/mol	ε(i)-ε(j)	F(i,j)
Dimer-OAc-	LP O61	σ* C18-H20	45.528	0.70	0.080
	LP O62	σ* C3-H8	26.628	0.71	0.061
Dimer-Ala ⁻	LP O61	σ* C18-H20	31.248	0.70	0.066
	LP O62	σ* C3-H8	24.150	0.71	0.058
Dimer-Asp ⁻	LP O60	σ* C18-H20	26.544	0.70	0.061
	LP O61	σ* C3-H8	21.756	1.14	0.069
Dimer-Ser-	LP O60	σ* C18-H20	29.148	0.70	0.064
	LP O61	σ* C3-H8	22.386	1.13	0.069
Dimer-Cl-	LP Cl55	σ* C18-H20	28.560	0.73	0.063
	LP Cl55	σ* C3-H8	20.034	0.67	0.050
Dimer-HSO ₄ -	LP O58	σ* C18-H20	9.786	0.73	0.038
	LP O57	σ* C3-H8	6.132	0.76	0.031
Dimer-N ₁₁₁₁ ⁺	LP O24	σ* C55-H56	7.308	1.14	0.040
	LP O24	σ* C63-H65	8.570	1.14	0.040
	LP O24	σ* C68-H70	9.618	1.14	0.046
Dimer-N ₂₂₂₂ ⁺	LP O24	σ* C58-H60	8.946	1.15	0.044
	LP O24	σ* C65-H67	7.098	1.14	0.039
Dimer-Amim ⁺	LP O24	σ* C57-H60	35.274	1.16	0.087
	LP O24	σ* C63-H65	2.688	1.13	0.024
Dimer-C ₃ mim ⁺	LP O24	σ* C57-H60	33.810	1.15	0.086
	LP O24	σ* C63-H65	1.008	1.13	0.015
Dimer-Bmim ⁺	LP O24	σ* C57-H60	26.040	1.14	0.075
	LP O24	σ* C63-H65	4.578	1.15	0.032
Dimer-C ₄ dmim ⁺	LP O24	σ* C79-H81	12.642	1.14	0.053
	LP O24	σ* C62-H64	11.214	1.13	0.050

Fig. S6 Scatters of reduced density gradient versus the electron density multiplied by the second Hessian matrix sign(λ_2)p for conformers of interest calculated at B3LYP/6-31++G** level

Fig. S7 Reduced density gradient isosurfaces (s=0.6 a.u.) for selected conformers calculated at B3LYP/6-31++G** level. The surfaces colored on a red-green blue scale according to values of sign(λ_2) ρ . Red indicates strong attractive interactions, and blue indicates strong nonbonded overlap

Fig. S8 Results of interaction energy calculation for the 24 kinds of Dimer model compound and ionic

liquids

Entry	Structures	ΔE _{CA} (kJ/mol)	ΔE_{D-CA} (kJ/mol)	ΔE_{D-C-A} (kJ/mol)
1	Dimer-AmimOAc	-415.47	-103.18	-518.64
2	Dimer-C ₃ mimOAc	-412.32	-102.96	-515.28
3	Dimer-BmimOAc	-410.82	-103.41	-514.23
4	Dimer-C ₄ dmimOAc	-397.82	-108.51	-506.32
5	Dimer-AmimAla	-418.58	-85.41	-503.99
6	Dimer-C ₃ mimAla	-418.04	-84.10	-502.14
7	Dimer-BmimAla	-411.65	-90.11	-501.76
8	Dimer-C ₄ dmimAla	-408.39	-84.60	-492.99
9	Dimer-AmimAsp	-399.24	-102.66	-501.90
10	Dimer-C ₃ mimAsp	-399.84	-98.84	-498.68
11	Dimer-BmimAsp	-398.67	-97.71	-496.38
12	Dimer-C ₄ dmimAsp	-393.03	-87.68	-480.71
13	Dimer-AmimSer	-382.61	-102.84	-485.45
14	Dimer-C ₃ mimSer	-378.65	-103.36	-482.01
15	Dimer-BmimSer	-377.98	-103.28	-481.26
16	Dimer-C ₄ dmimSer	-384.77	-89.58	-474.35
17	Dimer-AmimHSO ₄	-391.04	-83.96	-475.00
18	Dimer-C ₃ mimHSO ₄	-381.13	-90.02	-471.15
19	Dimer-BmimHSO ₄	-381.22	-88.04	-469.26
20	Dimer-C ₄ dmimHSO ₄	-370.00	-91.38	-461.38
21	Dimer-AmimCl	-391.48	-74.57	-466.05
22	Dimer-C ₃ mimCl	-387.25	-76.93	-464.18
23	Dimer-BmimCl	-386.93	-75.48	-462.41
24	Dimer-C ₄ dmimCl	-376.77	-78.23	-455.00

Table S5 Calculated interaction energy at the B3LYP-D3/6-311+G** level of theory. (D-dimer, C-cation, A-anion, CA-ion pairs)

Table S6 H-bond lengths and angles of Dimer-ion pairs conformers at the level of B3LYP/6-31++G** and B3LYP-D3/6-311+G**

	B3LYP/6-31++G**			B3LYP-D3/6-311+G**			
Structure	H-bond	Length(Å)	Angle (°)	H-bond	Length(Å)	Angle (°)	
Dimer-AmimOAc	C18-H19O80	2.196	170.75	C18-H19O80	2.706	105.99	
	С3-Н8…О81	2.236	164.31	С3-Н8…О81	2.345	155.69	
	С57-Н60-О24	2.212	147.89	С57-Н60-О24	2.102	172.56	
Dimer-AmimAla	C18-H19O78	2.212	172.80	C18-H19-078	2.305	138.38	
	С3-Н8О79	2.279	159.91	С3-Н8О79	2.676	102.82	
	С57-Н60-О24	2.216	147.76	С57-Н60-О24	2.244	144.25	
Dimer-AmimAsp	C18-H19O78	2.239	171.09	C18-H19O78	2.310	136.32	
	С3-Н8…О79	2.305	159.12	С3-Н8…О79	2.663	101.98	

	C57-H60-O24	2.202	148.02	С57-Н60-О24	2.21	145.64
Dimer-AmimSer	C18-H19O80	2.213	172.33	C18-H19O80	2.340	136.52
	С3-Н8О81	2.318	158.11	С3-Н8-081	2.738	102.71
	С57-Н60-О24	2.184	150.11	С57-Н60-О24	2.167	117.76
Dimer-AmimCl	C15-H16-Cl55	2.610	153.41	C15-H16-Cl55	2.479	159.93
	С26-Н29-С155	2.853	168.60	С26-Н29-С155	2.722	178.63
	С58-Н61-О13	2.271	146.41	С58-Н61-О13	2.248	147.71
Dimer-AmimHSO ₄	С15-Н16О56	2.315	113.40	С15-Н16-О56	2.433	141.14
	С26-Н29-О58	2.262	153.98	С26-Н29-О58	2.152	153.37
	С63-Н66-О13	2.401	127.48	С63-Н66-О13	2.162	136.89

Table S7 The main donor-acceptor interactions in the process and their second order perturbation stabilization energy E(2) of Dimer-ion pair.

	π -stacking interaction, kJ/mol		H-bond interaction, kJ/mol			
Structure	Donor	Acceptor	E(2)	Donor (i)	Acceptor (j)	E(2)
Dimer-AmimOAc	πC25-C26	σ*C63-H65	2.89	LP O80	σ* C18-H19	14.83
	πC25-C26	π*C66-C72	0.63	LP O81	σ* С3-Н8	9.87
	πC25-C26	π*C63-C65	0.42	LP O24	σ* C57-H60	11.80
Dimer-AmimAla	πC25-C26	σ*C63-H65	2.60	LP O78	σ* C18-H20	14.28
	πC25-C26	π*C66-C72	0.51	LP O79	σ* С3-Н8	8.23
	πC25-C26	π*C63-C65	0.39	LPO24	σ* C57-H60	11.59
Dimer-AmimAsp	πC25-C26	σ*C63-H65	3.15	LP O78	σ* C18-H20	12.94
	πC25-C26	π*C66-C72	0.78	LP O79	σ* С3-Н8	7.31
	πC25-C26	π*C63-C65	0.37	LPO24	σ* C57-H60	12.47
Dimer-AmimSer	πC25-C26	σ*C63-H65	3.12	LP O78	σ* C18-H19	13.90
	πC25-C26	π*C66-C72	0.23	LP O79	σ* С3-Н8	6.72
	πC25-C26	π*C63-C65	0.36	LP O24	σ* C57-H60	13.57
Dimer-AmimCl	πC25-C26	σ*C63-H65	2.56	LP C155	σ* C15-H16	10.54
	πC25-C26	π*C66-C72	0.52	LP C155	σ* C26-H19	7.06
	πC25-C26	π*C63-C65	0.91	LP O13	σ* C58-H61	8.82
Dimer-AmimHSO ₄	πC25-C26	σ*C63-H65	2.78	LP O56	σ* C15-H16	11.80
	πC25-C26	π*C66-C72	0.15	LP O58	σ* C26-H29	8.61
	πC25-C26	π*C63-C65	0.68	LP O13	σ* C63-H66	4.2

Fig. S9 RDG scatter plot (isovalue =0.5) and isosurfaces (s=0.7) plots of the conformers: Dimer-AmimAla, Dimer-AmimAsp, Dimer-AmimSer, Dimer-AmimCl and Dimer-AmimHSO₄. The isosurfaces are colored on a blue-green-red scale according to values of sign(λ_2) ρ , ranging from -0.05 to 0.05 a.u.. Red indicates strong attractive interactions, and blue indicates strong nonbonded overlap.

Fig. S10 Results of interaction energy calculation for the 24 kinds of EG and ionic liquids

Entry	Structures	ΔE _{CA} (kJ/mol)	ΔE_{E-CA} (kJ/mol)	ΔE _{E-C-A} (kJ/mol)
1	EG-AmimOAc	-364.63	-136.86	-501.49
2	EG-C ₃ mimOAc	-357.35	-141.81	-499.16
3	EG-BmimOAc	-358.07	-139.74	-497.81
4	EG-C ₄ dmimOAc	-339.11	-133.74	-472.84.
5	EG-AmimAla	-339.64	-142.11	-481.75
6	EG-C ₃ mimAla	-341.93	-137.29	-479.21
7	EG-BmimAla	-341.94	-135.89	-477.83
8	EG-C ₄ dmimAla	-320.03	-131.89	-451.92
9	EG-AmimAsp	-329.07	-140.33	-469.40
10	EG-C ₃ mimAsp	-328.61	-135.21	-463.81
11	EG-BmimAsp	-328.16	-134.30	-462.47
12	EG-C ₄ dmimAsp	-319.19	-122.65	-441.84
13	EG-AmimSer	-330.82	-141.13	-471.95
14	EG-C ₃ mimSer	-336.14	-133.63	-469.77
15	EG-BmimSer	-341.44	-138.32	-479.76
16	EG-C ₄ dmimSer	-315.24	-126.86	-442.10
17	EG-AmimHSO ₄	-336.29	-114.00	-450.29
18	EG-C ₃ mimHSO ₄	-331.75	-113.35	-445.09
19	EG-BmimHSO ₄	-330.87	-113.02	-443.89
20	EG-C ₄ dmimHSO ₄	-331.46	-88.94	-420.40
21	EG-AmimCl	-374.78	-48.72	-423.50
22	EG-C ₃ mimCl	-373.97	-47.18	-421.15
23	EG-BmimCl	-372.78	-47.26	-420.04
24	EG-C ₄ dmimCl	-349.74	-63.43	-413.17

Table S8 Calculated interaction energy at the B3LYP/6-31++G** level of theory. (E-EG, C-cation, A-anion, CA-ion pairs)

Fig. S11 The charge transfer when anion cation and EG interact

The interaction of ILs and EG makes the electronegativity of oxygen of hydroxyl in EG stronger, which are shown in Fig. S11. The NPA charges of both isolated N_{1111}^+ , Ala⁻, EG and EG- N_{1111} Ala are analyzed here. The total negative charge on anion increases from -1 to -0.82. The total positive charge on cation decreases from 1 to 0.90. and the total charge on EG decreases from 0 to -0.08, while a small charge transfer of 0.18 occurs from anion to cation and EG. Fig. S11D shows the direction of the charge transfer. The interaction of anion, cation and EG make the electronegativity of oxygen of hydroxyl in EG stronger than that of before interaction (from -0.778 to -0.836), which make the oxygen in EG prefer to attacking the carbon of the ester group in PET and finally results in degradation of PET.

Fig. S12 optimized structures of anion, cation and EG by B3LYP/6-31++G** with the relative energy (kJ/mol). O atoms (red), N atoms (blue), H atoms (light gray), C atoms (dark gray). The dashed lines note the H-bonds formed in the ion pairs

Bond	EG	Α	В	С	D	Ε	F	G
C1-C4	1.520	1.534	1.528	1.520	1.526	1.526	1.530	1.521
C1-O9	1.429	1.439	1.447	1.405	1.416	1.416	1.417	1.414
C4-O7	1.429	1.406	1.403	1.428	1.425	1.426	1.414	1.422
O9-H10	0.965	0.966	0.964	0.988	1.003	1.004	0.998	0.996
O7-H8	0.965	0.989	0.990	0.965	0.965	0.965	1.002	0.965

Table S9 Changes in bond length for EG while it interacts with N_{1111} Ala

The interaction between EG and N_{1111} Ala was studied in Fig. S12. it is found that there are different energy minimum structures (A-G) for the cooperation of EG with N_{1111} Ala via H-bonds. The H-bonds are formed among the oxygen of carboxyl in Ala⁻, C-H of N_{1111}^+ and hydrogen of the hydroxyl in EG. Table S8 shows that the interaction between EG and N_{1111} Ala will bring changes to the bond lengths (original 0.965 to 1.004), which renders the length of O-H of EG longer and causes the hydrogen to be lost more easily.