## **Supplementary Materials**

## Materials and methods

## Chemical analysis of YXS Intestinal Absorption Liquid

YXS intestinal absorption liquid and cold acetonitrile were mixed at a ratio of 1:3 and then vortexed for 30 s prior to analysis. The mixture was de-proteinized by centrifugation at 4°C (21,130 g for 30 min) and the supernatant was put into a new centrifugal tube and dried using N2 at room temperature (25°C). The residue was then dissolved in 5 ml of methanol and injected into the UPLC. The blank intestinal absorption liquid was also manufactured as stated above. Analysis was performed by UPLC (1290 Infinity Binary LC System, Agilent Technologies, USA) and coupled with ESI-Q/Tof-MS. The LC system was comprised of an Agilent ZORBAX RRHD Eclipse Plus C18 column (100 x 3 mm, 1.8  $\mu$ m). The mobile phase was composed of solvent A (0.1% formic acid-water) and solvent B (0.1% formic acid-acetonitrile) with a gradient elution (0–7 min, 10–40% B; 7–9.5 min, 40–55% B; 9.5–12 min, 55–55% B; 12–17 min, 55–88% B.). The flow rate of the mobile phase was 0.5 mL•min-1. The column temperature was maintained at 45°C, and the sample manager temperature was set at 4°C. The injection volume was 1  $\mu$ l-1.

Mass spectrometry was performed on a Quadrupole/Time-Of-Flight Mass Spectrometer (QTOF-MS; model G6540B Agilent Technologies, USA) using a Dual Agilent Jet Stream (AJS) ESI source. The instrument was operated in positive and negative-ion modes, respectively. The scanning mass-to-charge (m/z) range was from 50 to 1500 with a scan rate of 1.00 spectra•sec-1. The capillary voltage was set to 4000 V and 3500 V (positive and negative mode, respectively) and the fragmentor was set to 175 V. The pressure of the nebulizer was set at 35 psi, the gas temperature to 325°C, and the continuous gas flow to 5 L•min-1. The software used for data acquisition and analysis was Agilent MassHunter Workstation. According our previous study, the use of molecular feature orientated precursor ion selection, tandem mass spectrometry structure elucidation and the reference standards identified 276 chemical compounds within the Yixin-Shu capsule in the UPLC-Q/TOF-MS was then constructed. In this study, the chemical structures of YXS capsule intestinal absorption liquid were identified according to exact mass and retention time data. When necessary, further confirmation was acquired through comparisons with authentic standards and MS/MS fragmentation patterns.



Figure S1. Typical total ion chromatography (TIC) profiles of YXS intestinal absorption liquid in the negative (A) and positive (B) signal modes. Names, molecular formulas and structures of the compounds (No. 1-62) are in the Supplementary Materials section.

| N  | Rt(min) | Compound names                 | Molecular | Expected     | Observed  | Mass  | measured mass   |
|----|---------|--------------------------------|-----------|--------------|-----------|-------|-----------------|
| 0. |         |                                | formula   | neutral mass | neutral   | accur | m/z(Da)         |
|    |         |                                |           | (Da)         | mass (Da) | acy   |                 |
|    |         |                                |           |              |           | (ppm  |                 |
|    |         |                                |           |              |           | )     |                 |
| 1  | 1.66    | Chlorogenic acid*              | C16H18O9  | 354.0951     | 354.0958  | 2.0   | 355.1031        |
|    |         |                                |           |              |           |       | $[M+H]^{+}$     |
| 2  | 1.91    | Protocatechuic acid*           | С7Н6О4    | 154.0266     | 154.0265  | -0.6  | 153.0192 [M-    |
|    |         |                                |           |              |           |       | H] <sup>.</sup> |
| 3  | 2.10    | Vanillin*                      | C8H8O3    | 152.0473     | 152.0466  | -4.6  | 151.0393 [M-    |
|    |         |                                |           |              |           |       | H] <sup>.</sup> |
|    |         |                                |           |              |           |       | 197.0448        |
|    |         |                                |           |              |           |       | [M+HCOO]-       |
| 4  | 2.60    | Vanillic acid*                 | C8H8O4    | 168.0423     | 168.042   | -1.8  | 167.0347 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 5  | 2.72    | Danshensu*                     | C9H10O5   | 198.0528     | 198.0521  | -3.5  | 197.0448 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 6  | 3.15    | Caffeic acid*                  | С9Н8О4    | 180.0423     | 180.042   | -1.7  | 179.0347 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 7  | 3.52    | Calycosin-7-O-β-D-glucoside*   | C22H22O10 | 446.1213     | 446.1197  | -3.6  | 447.1270        |
|    |         |                                |           |              |           |       | [M+H]+          |
| 8  | 4.13    | Rosmarinic acid*               | C18H16O8  | 360.0845     | 360.0839  | -1.7  | 359.0766 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 9  | 4.21    | Lithospermic acid*             | C27H22O12 | 538.1111     | 538.1124  | 2.4   | 539.1197 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 10 | 4.23    | Salvianolic acid A*            | C26H22O10 | 494.1213     | 494.121   | -0.6  | 493.1137 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 11 | 4.31    | Protocatechuic aldehyde*       | С7Н6О3    | 138.0317     | 138.0329  | -8.7  | 137.0256 [M-    |
|    |         |                                |           |              |           |       | H] <sup>.</sup> |
| 12 | 4.46    | Re 4                           | C47H80O18 | 932.5345     | 932.5304  | -4.4  | 931.5231 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 13 | 4.59    | Salvianolic acid B*            | C36H30O16 | 718.1534     | 718.1507  | -3.8  | 717.1434 [M-    |
|    |         |                                |           |              |           |       | H] <sup>.</sup> |
| 14 | 4.69    | Notoginsenoside R1             | C47H80O18 | 932.5345     | 932.5311  | -3.6  | 931.5238 [M-    |
|    |         |                                |           |              |           |       | H] <sup>.</sup> |
| 15 | 4.75    | Formononetin-7-O-β-D-glycoside | C22H22O9  | 430.1264     | 430.1269  | 1.2   | 431.1342        |
|    |         |                                |           |              |           |       | [M+H]+          |
| 16 | 4.83    | Isoferulic acid                | C10H10O4  | 194.0579     | 194.0579  | 0.0   | 193.0506 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 17 | 4.99    | Re*                            | C48H82O18 | 946.5501     | 946.5476  | -2.6  | 945.5403 [M-    |
|    |         |                                |           |              |           |       | H]-             |
| 18 | 5.50    | Rg1/Ia,                        | C42H72O14 | 800.4922     | 800.493   | 1.0   | 801.5003        |

Table S1. Summary of chemical constituents identified in YXS Capsules intestinal absorption liquid by UPLC-ESI-Q/TOF-MS

|    |      |                             |           |           |          |      | $[M+H]^+$          |
|----|------|-----------------------------|-----------|-----------|----------|------|--------------------|
| 19 | 5.53 | Calycosin                   | C16H12O5  | 284.0685  | 284.068  | -1.8 | 283.0607 [M-       |
|    |      |                             |           |           |          |      | H]·                |
|    |      |                             |           |           |          |      | 285.0753           |
|    |      |                             |           |           |          |      | [M+H]-             |
| 20 | 5.98 | Acetyl-Re                   | С50Н84О19 | 988.5607  | 988.5569 | -3.8 | 987.5496           |
| 21 | 6.73 | Cyclocanthoside E           | C41H70O14 | 786.4766  | 786.4779 | 1.7  | 787.4852           |
|    |      |                             |           |           |          |      | [M+H]+             |
| 22 | 6.86 | Ursolic acid/Oleanlic acid  | C30H48O3  | 456.3603  | 456.3611 | 1.8  | 457.3684           |
|    |      |                             |           |           |          |      | [M+H] <sup>+</sup> |
| 23 | 6.87 | Rf                          | C42H72O14 | 800.4922  | 800.4932 | 1.2  | 801.5005           |
|    |      |                             |           |           |          |      | [M+H]+             |
| 24 | 7.13 | Rb1*                        | C54H92O23 | 1108.6029 | 1108.598 | -4.0 | 1107.5912 [M-      |
|    |      |                             |           |           | 5        |      | H]·                |
| 25 | 7.13 | Rg2/Rg3/Ginsenoside F2      | C42H72O13 | 784.4973  | 784.4981 | 1.0  | 785.5054           |
|    |      |                             |           |           |          |      | [M+H] <sup>+</sup> |
| 26 | 7.23 | Malonyl-ginsenoside Rb1     | С57Н94О26 | 1194.6033 | 1194.598 | -4.4 | 1193.5908 [M-      |
|    |      |                             |           |           | 1        |      | Н]-                |
| 27 | 7.38 | Rc                          | С53Н90О22 | 1078.5924 | 1078.587 | -4.5 | 1077.5802 [M-      |
|    |      |                             |           |           | 5        |      | H]·                |
| 28 | 7.61 | Acetyl-Rb1                  | С56Н94О24 | 1150.6135 | 1150.610 | -2.3 | 1149.6035 [M-      |
|    |      |                             |           |           | 8        |      | H]-                |
| 29 | 7.63 | Rb2/Rb3                     | С53Н90О22 | 1078.5924 | 1078.586 | -5.7 | 1077.5790 [M-      |
|    |      |                             |           |           | 3        |      | H]·                |
| 30 | 7.84 | Quinquenoside R1            | С56Н94О24 | 1150.6135 | 1150.607 | -4.9 | 1149.6006 [M-      |
|    |      |                             |           |           | 9        |      | H]-                |
| 31 | 8.02 | Acetyl-Rf/Acetyl-           | C44H74O15 | 842.5028  | 842.5041 | 1.5  | 843.5114           |
|    |      | Rg1/Yesanchinoside D        |           |           |          |      | [M+H]+             |
| 32 | 8.03 | Agroastragaloside II        | C43H72O15 | 828.4871  | 828.4882 | 1.3  | 829.4955           |
|    |      |                             |           |           |          |      | [M+H]+             |
| 33 | 8.11 | Acetyl-Rc/Rs1/RS2           | С55Н92О23 | 1120.6029 | 1120.596 | -6.0 | 1119.5889 [M-      |
|    |      |                             |           |           | 2        |      | н]-                |
| 34 | 8.14 | Rd                          | C48H82O18 | 946.5501  | 946.5453 | -5.1 | 945.5380 [M-       |
|    |      |                             |           |           |          |      | H]-                |
| 35 | 8.18 | Tanshindiol B/Tanshindiol C | C18H16O5  | 312.0998  | 312.0996 | -0.6 | 311.0923 [M-       |
|    |      |                             |           |           |          |      | H]-                |
| 36 | 8.34 | Acetyl-Rb2/Acetyl-Rb3       | С55Н92О23 | 1120.6029 | 1120.596 | -6.0 | 1119.5889 [M-      |
|    |      |                             |           |           | 2        |      | H]-                |
| 37 | 8.49 | Gypenoside X VII            | C48H82O18 | 946.5501  | 946.5454 | -5.0 | 945.5381 [M-       |
|    |      |                             |           |           |          |      | н]-                |
| 38 | 8.52 | Tanshinol B*                | C18H16O4  | 296.1049  | 296.104  | -3.0 | 297.1113           |
|    |      |                             |           |           |          |      | [M+H] <sup>+</sup> |
| 39 | 8.63 | Kadsuranin                  | C23H28O6  | 400.1886  | 400.1863 | -5.7 | 399.1790 [M-       |
|    |      |                             |           |           |          |      | H]-                |

| 40 | 8.86  | Pseudo-ginsenoside RC1/Acetyl-  | C50H84O19 | 988.5607 | 988.5556 | -5.2  | 987.5483 [M-       |
|----|-------|---------------------------------|-----------|----------|----------|-------|--------------------|
|    |       | gypenoside X VII/Acetyl-Rd      |           |          |          |       | H] <sup>.</sup>    |
| 41 | 9.06  | 1,2,6,7,8,9-Hexahydro-1,6,6-    | C19H20O4  | 312.1362 | 312.1364 | 0.6   | 212 1427           |
|    |       | trimethyl-3,11-dioxanaphth[2,1- |           |          |          |       | 515.1457           |
|    |       | e]azulene-10,12-dione           |           |          |          |       | [M+U]              |
| 42 | 9.28  | Tanshinone II B                 | C19H18O4  | 310.1205 | 310.1206 | 0.3   | 311.1279           |
|    |       |                                 |           |          |          |       | $[M+H]^{+}$        |
| 43 | 9.78  | Tanshinone VI                   | C18H16O4  | 296.1049 | 296.1043 | -2.0  | 295.0970 [M-       |
|    |       |                                 |           |          |          |       | H]-                |
| 44 | 9.82  | Gomisin D                       | C28H34O10 | 530.2152 | 530.2154 | 0.4   | 531.2227           |
|    |       |                                 |           |          |          |       | $[M+H]^{+}$        |
| 45 | 9.91  | Gomisin J                       | C22H28O6  | 388.1886 | 388.1873 | -3.3  | 389.1946           |
|    |       |                                 |           |          |          |       | $[M+H]^{+}$        |
| 46 | 10.13 | Gomisin O/Epi-gomisin O         | C23H28O7  | 416.1835 | 416.1845 | 2.4   | 417.1918           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 47 | 10.19 | 1-Oxomiltirone                  | C19H20O3  | 296.1412 | 296.1415 | 1.0   | 297.1488           |
|    |       |                                 |           |          |          |       | [M+H] <sup>+</sup> |
| 48 | 10.66 | Tanshinone I                    | C18H12O3  | 276.0786 | 276.0804 | 6.5   | 277.0877           |
|    |       |                                 |           |          |          |       | [M+H] <sup>+</sup> |
| 49 | 10.73 | Schisandrol B*                  | C23H28O7  | 416.1835 | 416.1792 | -10.3 | 417.1865           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 50 | 11.11 | Danshenxinkun B                 | C18H16O3  | 280.1099 | 280.1102 | 1.1   | 281.1175           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 51 | 11.23 | Schisandrin B*                  | C23H28O6  | 400.1886 | 400.1889 | 0.7   | 401.1962           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 52 | 11.67 | Tanshinone II A*                | C19H18O3  | 294.1256 | 294.126  | 1.4   | 295.1333           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 53 | 11.70 | Schisandrin C                   | C22H24O6  | 384.1573 | 384.1619 | 12.0  | 383.1546 [M-       |
|    |       |                                 |           |          |          |       | H]-                |
| 54 | 11.93 | Gomisin G                       | C30H32O9  | 536.2046 | 536.2025 | -3.9  | 537.2098           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 55 | 12.25 | (-)Gomisin K1/(+) Gomisin K2    | C23H30O6  | 402.2042 | 402.2047 | 1.2   | 403.2120           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 56 | 12.62 | 1,2-Didehydromiltirone          | C19H20O2  | 280.1463 | 280.1433 | -10.7 | 281.1506           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 57 | 12.77 | Schisantherin A*                | С30Н32О9  | 536.2046 | 536.2024 | -4.1  | 537.2097           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 58 | 12.85 | Cryptotanshinone                | С19Н20О3  | 296.1412 | 296.1415 | 1.0   | 297.1488           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 59 | 13.20 | Schisanhenol                    | C23H30O6  | 402.2042 | 402.2049 | 1.7   | 403.2122           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 60 | 14.70 | Senkyunolide B/C/E              | C12H12O3  | 204.0786 | 204.0788 | 1.0   | 205.0861           |
|    |       |                                 |           |          |          |       | [M+H]+             |
| 61 | 14.90 | Schisandrin A*                  | C24H32O6  | 416.2199 | 416.2208 | 2.2   | 417.2281           |
|    |       |                                 |           |          |          | 1     |                    |

|    |       |           |          |          |          |     | $[M+H]^{+}$ |
|----|-------|-----------|----------|----------|----------|-----|-------------|
| 62 | 15.59 | Gomisin N | C23H28O6 | 400.1886 | 400.1887 | 0.2 | 401.1960    |
|    |       |           |          |          |          |     | $[M+H]^+$   |

\* Compound identified by comparision with the reference standards

## Reference

Wang HP, Chen C., Liu Y, Yang HJ, Wu HW, Xiao HB. 2015. Identification of the chemical constituents of Chinese medicine Yi-Xin-Shucapsuleby molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation. J Sep Sci. 38: 3687-3695.