Complimentary effects of annealing temperature towards optimal tuning of functionalized Carbon-V₂O₅ hybrid nanobelts for targeted dual applications in electrochromic and supercapacitor devices

Remya Narayanan^a*, Anweshi Dewan^a, Debanjan Chakraborty

Figure S1: SEM images of C-dots.

Formation carbon nano-sphere under hydrothermal condition at a temperature of 140 °C for 5 h.

Figure S2: TGA curves of $C@V_2O_5$ and V_2O_5

Figure S3: photoluminescence spectra of V_2O_5 nanorods (o) and $C@V_2O_5$ (\Box) at an excitation wavelength of 370 nm.

 $C@V_2O_5$ shows a broad luminescent peak in the range of 420-600 nm whereas the one without C-dot doesn't show any characteristics emission peak, which apparently indicates that the luminescent characteristics arises from the presence carbon nano-sphere.

Figure S4: Linear sweep voltammetry of V₂O₅ and C@V₂O₅ by employing Pt wire as the counter electrode.

LSV clearly shoes the higher value of current density values of $C@V_2O_5$ compared to pristine V_2O_5