Supplementary Information

Interface engineering through electron transport layer modification for high efficiency organic solar cells

Kunal Borse ^{a,b,1}, Ramakant Sharma ^{a,1}, Dipti Gupta ^{a,*} and Aswani Yella ^{a,*}

 ^a Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai- 400076, India.
^b Department of Metallurgy, Government Polytechnic, Kolhapur- 416004, India

* Corresponding Author Email: diptig@iitb.ac.in (D.G), aswani.yella@iitb.ac.in (A.Y)

¹Kunal Borse and Ramakant Sharma contributed equally to this work.

Figure S1 *J-V* characteristics curves under illumination (AM 1.5G, one sun) of devices with ZnO, $ZnO/Ba(OH)_2$ and $ZnO:Ba(OH)_2$ nanocomposite as an ETLs.

Figure S2 EQE spectra of devices with ZnO, $ZnO/Ba(OH)_2$ and $ZnO:Ba(OH)_2$ nanocomposite as an ETLs.

Table S1 Performance p	parameters for	devices with	ZnO, ZnO	$D/Ba(OH)_2$ and Z	ZnO:Ba(OH) ₂
nanocomposite as an ET	ГLs.				

Electron Transport Layer (ETL)	$V_{\rm oc}$ (mV)	$J_{\rm sc}^{\rm a}$ (mA/cm ²)	FF (%)	PCE ^b (%)
ZnO	803	14.28 (14.05)	62.30	7.12 (7.07)
ZnO/Ba(OH) ₂	814	15.34 (15.56)	68.20	8.54 (8.46)
ZnO:Ba(OH) ₂ (3wt%)	803	14.50 (14.33)	63.90	7.44 (7.39)
ZnO:Ba(OH) ₂ (6wt%)	810	15.15 (14.90)	65.10	7.98 (7.92)
ZnO:Ba(OH) ₂ (9wt%)	818	15.69 (15.70)	67.60	8.66 (8.59)
$ZnO:Ba(OH)_2(12wt\%)$	813	14.95 (15.07)	66.60	8.07 (8.01)

^a Jsc as calculated from EQE is shown in parentheses. ^b The average PCE is shown in parentheses. Average PCE was calculated using the results of 5 devices.

Work	Cathode configuration	Anode Configuration	V _{oc} (mV)	$J_{\rm sc}^{\rm a}$ (mA/cm ²)	FF (%)	PCE ^b (%)
Present	ITO/ ZnO/Ba(OH) ₂	MoO ₃ /Ag	814	15.34 (15.56)	68.20	8.54 (8.46)
Present	ITO/ ZnO:Ba(OH) ₂ (9wt%)	MoO ₃ /Ag	818	15.69 (15.70)	67.60	8.66 (8.59)
Previous ¹	ITO/patterned ZnO	MoO ₃ /Al	780	19.47	66.90	10.10
Previous ²	ITO/IZO	MoO ₃ /Ag	790	16.42	70.2	9.11
Previous ³	ITO/AZO	MoO ₃ /Ag	800	17.70	70.70	9.94
Previous ⁴	ITO/PFN	MoO ₃ /Al	830	17.43	73.80	10.61
Previous ⁵	ITO/C 60 –SB	MoO ₃ /Ag	750	18.24	66.00	9.08
Previous ⁶	ITO/ZnO:PBI-H	MoO ₃ /Al	820	17.69	72.90	10.59
Previous ⁷	ITO/ZnO/[BMIM] BF 4	MoO ₃ /Ag	780	17.70	73.50	10.15
Previous ⁸	ITO/ZnO-C 60	MoO ₃ /Ag	800	15.73	74.30	9.35

Table S1a Comparison of performance parameters for PTB7-Th: PCBM devices with ZnO, $ZnO/Ba(OH)_2$ and $ZnO:Ba(OH)_2$ nanocomposite as an ETLs with the previously reported similar studies.

^a Jsc as calculated from EQE is shown in parentheses. ^b The average PCE is shown in parentheses. Average PCE was calculated using the results of 5 devices.

Electron Transport Layer (ETL)	Conductivity (S/cm)
ZnO	51.9 × 10 ⁻³
ZnO/Ba(OH) ₂	91.4 × 10 ⁻³
ZnO:Ba(OH) ₂ (3wt%)	74.8×10^{-3}
ZnO:Ba(OH) ₂ (6wt%)	75.2×10^{-3}
ZnO:Ba(OH) ₂ (9wt%)	93.2×10^{-3}
$ZnO:Ba(OH)_2(12wt\%)$	89.3 × 10 ⁻³

Table S1b Conductivities of ZnO, ZnO/Ba(OH)2 and ZnO:Ba(OH)2 nanocomposite thin films

Table S2 Contact angle of the surface of films of ZnO, $ZnO/Ba(OH)_2$ and $ZnO:Ba(OH)_2$ nanocomposite thin films deposited on ITO coated glass substrates.

Electron Transport Layer (ETL)	Contact Angle (in deg)
ZnO	46.88 ± 0.65
ZnO/Ba(OH) ₂	49.59 ± 0.54
$ZnO:Ba(OH)_2(3wt\%)$	47.98 ± 0.60
$ZnO:Ba(OH)_2$ (6wt%)	52.09 ± 1.59
ZnO:Ba(OH) ₂ (9wt%)	52.65 ± 0.81
ZnO:Ba(OH) ₂ (12wt%)	51.75 ± 0.87

Figure S3 Nyquist plots of PTB7-Th:PC₇₀BM OSCs with (a) ZnO (b) $ZnO/Ba(OH)_2$ and (c) ZnO:Ba(OH)₂ nanocomposite as an ETLs under different white light illumination intensities

Figure S4 Equivalent circuit used for fitting for different impedance curves.

Table S3 Order of recombination for devices with ZnO, $ZnO/Ba(OH)_2$ and $ZnO:Ba(OH)_2$ nanocomposite as an ETLs.

Electron Transport Layer (ETL)	α	β	λ (from Fig 6 (c))	λ (from Eq (7))
ZnO	0.29	0.70	3.93	1.36
ZnO/Ba(OH) ₂	0.27	0.86	2.75	2.12
ZnO:Ba(OH) ₂ (9 wt%)	0.25	0.76	2.32	2.03

References:

- 1 J. De Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li and J. X. Tang, *Adv. Mater.*, 2015, 27, 1035–1041.
- S. H. Liao, H. J. Jhuo, P. N. Yeh, Y. S. Cheng, Y. L. Li, Y. H. Lee, S. Sharma and S. A. Chen, *Sci. Rep.*, 2014, 4, 4–10.
- 3 L. K. Jagadamma, M. Al-Senani, A. El-Labban, I. Gereige, G. O. Ngongang Ndjawa, J. C. D. Faria, T. Kim, K. Zhao, F. Cruciani, D. H. Anjum, M. A. McLachlan, P. M. Beaujuge and A. Amassian, *Adv. Energy Mater.*, 2015, 5, 1–12.
- 4 Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell and Y. Cao, *Nat. Photonics*, 2015, 9, 174–179.
- 5 Y. Liu, Z. Page, S. Ferdous, F. Liu, P. Kim, T. Emrick and T. Russell, *Adv. Energy Mater.*, 2015, 5, 1–6.
- 6 L. Nian, W. Zhang, N. Zhu, L. Liu, Z. Xie, H. Wu, F. Würthner and Y. Ma, J. Am. Chem. Soc., 2015, 137, 6995–6998.
- 7 W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang and C. Li, *J. Mater. Chem. A*, 2015, 3, 10660–10665.
- 8 S. H. Liao, H. J. Jhuo, Y. S. Cheng and S. A. Chen, *Adv. Mater.*, 2013, 25, 4766–4771.