Assembly of Na₃V₂(PO₄)₂F₃@C Nanoparticles in Reduced Graphene Oxide Enabling Superior Na⁺ Storage for Symmetric Sodium Batteries

Ye Yao, a Lu Zhang, Yu Gao*a, Gang Chen, Chunzhong Wanga and Fei Du*a

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China

Email: dufei@jlu.edu.cn; gaoyu@jlu.edu.cn

Figure S1. SEM (a)and TEM(b) of NVPF@C

Figure S2. Charge-discharge profiles of the NVPF@C and NVPF@C@rGO.

Figure S3. Equivalent circuit for the Nyquist plots of the NVPF@C and NVPF@C@rGO.

Figure S4. Linear fitting of Z' vs. $\omega^{-1/2}$ of NVPF@C and NVPF@C@rGO.

Figure S5. Charge-discharge profile of NVPF@C@rGO in the voltage range of 0.01-2.0V at 1C rate.

Figure S6. Cycle performance of NVPF@C@rGO symmetric full cell at 1C.