Electronic Supplementary Material (ESI) for RSC advance. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Efficient electromagnetic interference shielding of lightweight carbon nanotube/polyethylene composite via compression molding plus saltleaching

Ling Xu^a, Li-Chuan Jia^a, Ding-Xiang Yan^{b,*}, Peng-Gang Ren^c, Jia-Zhuang Xu^a, Zhong-Ming Li^{a,*}

^aCollege of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

^bSchool of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China

^cInstitute of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, Shaanxi 710048, China

* Corresponding authors

E-mail: yandingxiang@scu.edu.cn; zmli@scu.edu.cn

1. SEM images of the fractured surface of the solid CNT/PE composite

Fig. S1 SEM images of the fractured surface of the solid CNT/PE composite.

Polymer matrix	Filler	Density (g/cm ³)	EMI SE	Ref.
	content		(dB)	
CNT/HDPE	3.39 vol%	0.26	27.1	Present work
CNT/PS ^{a)}	7.0 wt%	0.56	20	1
Graphene/PS ^{a)}	5.6 vol%	0.47	29	2
Graphene/PS ^{a)}	5.6 vol%	0.27	17	2
Graphene/PEI ^{a)}	10.0 wt%	0.25	11	3
Graphene/PMMA ^{a)}	5.0 wt%	0.79	16	4
Graphene/PI ^{a)}	16.0 wt%	0.28	20	5
CNT/PU ^{a)}	0.35 wt%	0.71	28	6
CNT/PU ^{a)}	0.35 wt%	0.58	8	6
CNT/PC ^{a)}	2.0 wt%	0.56	11	7
CNT/PC ^{a)}	2.0 wt%	0.44	7	7
CNT/PVDF ^{a)}	10.0 wt%	0.8	25	8

2. Table S1 Average EMI SE in X-band frequency range for the CNT/HDPE foam composite and several other reported foam composites in literature.

^{a)} PS, PEI, PMMA, PI, and PVDF are polystyrene, polyetherimide, poly (methyl methacrylate), polyimide and polyvinylidene fluoride, respectively.

Fig. S2 Variation in skin depth (δ) of L-CNT/HDPE, M-CNT/HDPE and S-CNT/HDPE as a function of frequency.

The skin depth (δ) of a shielding material can be calculated using the formula $\delta = 1/\sqrt{\pi f \sigma \mu}$ (Song W. L., Carbon 2014, 66, 67), where *f* is the frequency, σ is electrical conductivity, and μ is the magnetic permeability of materials with a relationship of $\mu = \mu_o \mu_{\gamma}$ ($\mu_o = 4\pi \times 10^{-7}$ H/m, μ_r is material's relative magnetic permeability and is equal to 1 for the nonmagnetic composite). The final calculated results are plotted in Fig. S2. It is observed that δ of S-CNT/HDPE significantly decreases with increased frequency, while δ of L-CNT/HDPE and M-CNT/HDPE is almost independent on frequency. For example, δ of S-CNT/HDPE is 129.2 and 105.1 mm at 8.2 and 12.4 GHz, respectively, meaning that a higher EMI SE can be achieved in S-CNT/HDPE at the high frequency.

References

- Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence, *Nano Letters*, 2005, 5, 2131-2134.
- D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang and Z.-M. Li, *Journal of Materials Chemistry*, 2012, 22, 18772-18774.
- J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang and W. g. Zheng, ACS Applied Materials & Interfaces, 2013, 5, 2677-2684.
- H.-B. Zhang, Q. Yan, W. G. Zheng, Z. He and Z. Z. Yu, ACS Applied Materials & Interfaces, 2011, 3, 918-924.
- Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang and W. Zheng, *RSC Advances*, 2015, 5, 24342-24351.
- M. M. Bernal, M. Martin-Gallego, I. Molenberg, I. Huynen, M. A. L. Manchado and R. Verdejo, *RSC Advances*, 2014, 4, 7911-7918.
- L. Monnereau, L. Urbanczyk, J.-M. Thomassin, T. Pardoen, C. Bailly, I. Huynen,
 C. Jérôme and C. Detrembleur, *Polymer*, 2015, 59, 117-123.
- H. Wang, K. Zheng, X. Zhang, X. Ding, Z. Zhang, C. Bao, L. Guo, L. Chen and X. Tian, *Composites Science and Technology*, 2016, 125, 22-29.