Supplementary Information

An impedimetric determination of alkaline phosphatase activity based on the oxidation reaction mediated by Cu²⁺ bound to polythymine DNA

Joon Young Lee,^a Jun Ki Ahn,^a Ki Soo Park^b and Hyun Gyu Park^{*a}

^a Department of Chemical and Biomolecular Engineering (BK21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

^b Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea

*Corresponding author. Tel.: +82 42 350 3932; Fax: +82 42 350 3910; E-mail: <u>hgpark@kaist.ac.kr</u>

Fig. S1 Fluorescence spectra obtained from CuNP formed by the reduction of Cu²⁺. (a) Fluorescence spectra from CuNP formed through treating Cu²⁺ with ascorbic acid in the presence of PPi at varying concentrations. (b) Fluorescence spectra obtained from solutions containing 100 μ M Cu²⁺, 2 mM ascorbic acid, 1 μ M poly-thymine DNA probe and 100 μ M PPi (1), or 100 μ M PPi previously treated with 1 nM ALP (2).

Fig. S2 Optimization of the reaction time for ALP reaction. (a) Nyquist plots of the impedance spectra and (b) electron transfer resistance (R_{et}) obtained from the corresponding impedance spectra at different ALP reaction times. The final concentrations of ALP, PPi, Cu²⁺, and ascorbic acid are 1 nM, 100 μ M, 100 μ M, and 2 mM, respectively.

Fig. S3 Optimization of the reaction time for Cu²⁺-mediated oxidation of ascorbic acid on the poly-thymine DNA-modified electrode. (a) Nyquist plots of the impedance spectra and (b) electron transfer resistance (R_{et}) obtained from the corresponding impedance spectra at different Cu²⁺-mediated oxidation times. The final concentrations of ALP, PPi, Cu²⁺, and ascorbic acid are 1 nM, 100 μ M, 100 μ M, and 2 mM, respectively.

Fig. S4 ALP assay in human serum samples. (a) Nyquist plots of the impedance spectra and (b) electron transfer resistance (R_{et}) obtained from the corresponding impedance spectra upon Cu²⁺-mediated oxidation in the presence of diluted human serum spiked with varying concentrations of ALP.

Key material/method	Detection limit (U/L)	Linear range (U/L)	Limitations	Reference
Nitrophenylphosphate plastic membrane sensor	30	30 - 3400	- Time-consuming preparation of membrane sensor (28 hr) - Low sensitivity	(Hassan et al. 2009)
λ Exonuclease- mediated signal amplification	100	1000 - 20000	 Requirement of additional enzyme Low sensitivity 	(Miao et al. 2011)
Nanoceria particle- mediated signal amplification	20	5000 - 640000	- Low sensitivity	(Hayat et al. 2013)
Ferrocene-derived substrate	0.4	1 - 250	- Complex synthesis of organic substrate	(Goggins et al. 2015)
Cu ²⁺ -mediated oxidation	7.2	22 - 565	-	This work

Table S1 Comparison of this method with previous electrochemical methods.

References

- 1. S. S. Hassan, H. E. Sayour and A. H. Kamel, Anal. Chim. Acta, 2009, 640, 75-81.
- 2. P. Miao, L. Ning, X. Li, Y. Shu and G. Li, *Biosens. Bioelectron.*, 2011, **27**, 178-182.
- 3. A. Hayat and S. Andreescu, Anal. Chem., 2013, 85, 10028-10032.
- 4. S. Goggins, C. Naz, B. J. Marsh and C. G. Frost, *Chem. Commun.*, 2015, **51**, 561-564.