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Table I: Summary of the key relations for absorption and recombination that are of greatest 

importance for the main paper. The equations below are discussed in this supplemental 

material document in more detail. 

quantity Dependence on effective mass meff 
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1. Absorption coefficients for parabolic bands

In the following, we will discuss the most important aspects of the tables in the main 

paper in more detail and provide equations without proportionality signs. We will use the 

symbols q for the elementary charge, kT for the thermal energy, m for the free electron mass 

(m = 9.109 × 10-31 kg), meff for the effective mass (in kg), ħ for the reduced Planck’s constant 
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( ), nr as the (real part of the) refractive index, Eg as the band gap of our eVs10582.6 16h

semiconductor and E as the photon energy.

According to Ridley, the absorption coefficient dir for interband transitions in a direct 

band gap semiconductor is given by1

(S1)
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where the dimensionless fine structure constant is defined as
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the Bohr radius
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It is useful to rewrite Eq. (S1) to obtain

(S5)
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using a prefactor consisting only of natural constants
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In case of an indirect semiconductor, we can write2 

(S7) 
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where ħij is energy of a particular phonon mode, Eg0 is the direct band gap and Eg the 

indirect band gap,  is the momentum matrix element, fBE is the Bose-Einstein distribution, cvp

Dij is the deformation potential constant for that phonon mode,  is the density of the material, 

MC is the number of equivalent conduction band valleys, and r,opt = nr² is the relative 

permittivity at optical frequencies. The main differences with respect to the direct transition 

are therefore the  term, the dependence on the deformation potential constant, the  2
0

 EEg

different dependence on refractive index and permittivity as well as the quadratic (indirect) 

vs. the square-root like (direct) dependence of  on . While the direct absorption gEE 

coefficient given by Eq. (S1) depends only on readily available parameters like band gap, 

effective mass and refractive index, equation (S7) for the indirect absorption coefficient is 

more complex. Therefore, we present a few examples by choosing numbers that correspond to 

a certain material. We distinguish two cases: (i) is a case, reminiscent of c-Si with rather 

larger phonon energies and an indirect band gap far above the direct one. If we chose the 

parameters such as in column Si of table SII, we obtain the pink solid line in Fig. S1. This line 

is slightly higher than the open symbols representing experimental data for the absorption 

coefficient of c-Si. If we chose the parameters in the column named MAPI in table SII, we 

obtain the solid blue line in Fig. S1. Here we assumed that the direct band gap is 100 meV 

above the indirect band gap. Therefore, we clearly see the singularity caused by the 

 term in Eq. (S7) that is obviously absent in the experimental absorption  2
0

 EEg

coefficient of MAPI. For energies above Eg0, we just used Eq. (S5) to calculate the direct 

absorption coefficient. Thus, the solid blue line is a combination of Eq. (S7) for energies 

below Eg0 and Eq. (S5) for energies above Eg0. While the indirect part of the simulated 

spectrum is fairly close to the experimental one, the direct part is slightly too optimistic. Thus, 

Fig. S1 shows that equations derived by Ridley1;2 are fairly useful in reproducing the 

approximate absorption coefficients based on the correct effective masses with the exception 



of the singularity produced by Eq. (S7). The  term in Eq. (S7) explains why the  2
0

 EEg

indirect part of the absorption coefficient seems to be pretty high in MAPI6 but the transition 

to the direct part of the absorption coefficient requires omitting the values that are within 

approximately 20 meV of the singularity.
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Figure S1: Absorption coefficient as a function of photon energy as obtained when using the 

parameters in the first two columns of table SII in combination with the equations (S5) and 

(S7) for the absorption coefficient of direct and indirect semiconductors. In addition, we show 

the experimental absorption coefficients of crystalline Si (c-Si) and of CH3NH3PbI3 (MAPI). 

In the case of MAPI, we assumed there to be an indirect band gap 100meV below the direct 

gap, thus, the singularity contained in Eq. (S7) is clearly visible at 1.62 eV. Above that point 

we used Eq. (S5) for the absorption coefficient of a direct semiconductor.



Table SII: Summary of the parameters needed to calculate the absorption coefficient of direct 

and indirect semiconductors. The four columns give the parameters chosen for Fig. S1 

(column c-Si and MAPI) for comparison with experimental data as well as the two more 

generic cases used for the main paper. 

Parameter Case c-Si Case MAPI Generic 
indirect

Generic direct

Band gap Eg 1.12 eV 1.52 eV 1.6 eV 1.6 eV

Direct gap Eg0 3.2 eV 1.62 eV 5 eV1 1.6 eV

Refractive index nr 3.5 2.5 2.5 2.5

Mass density  2.3 g/cm³ 4.16 g/cm³ 2.3 g/cm³ -

Momentum matrix 
element 7mp 22

cv 
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Effective mass CB meff,C

32.06 3/2

doseff,
2/3
C



mM 0.28 variable variable 

Effective mass VB 
meff,V

1.1 0.2 variable
= meff,C

variable 
= meff,C

Number of equivalent 
conduction band valleys 
MC

6 6 6 -

Deformation potential 
constant Dij

9
eV/m 105 10 eV/m 105 10 eV/m 105 10 -

Optical phonon energy 
ijh

58 meV 16.5 meV10 50 meV -

2. Capture cross section

According to Markvart, the capture cross section for non-radiative transitions via several 

phonons is given by3;4

, (S8) 
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where the parameter x is related to the number p of phonons involved in the transition and the 

Huang-Rhys factor SHR via5

1 in order to move the singularity out of the region relevant for photovoltaics
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In Eq. (S8), Vnk is the transition matrix element given by Eq. (6.5.8) in ref. 11. The Huang-

Rhys factor9;12 again depends on phonon energies, on the deformation potential and on the 

frequency dependent dielectric permittivity. However, it doesn’t directly depend on effective 

mass. 

The crucial parameters controlling non-radiative recombination are the SRH lifetimes for 

electrons and holes. These are related to the capture cross section via

. (S10)
tpn

pn Nvth,
,

1


 

where vth is the thermal velocity and Nt is the trap density. Noting that ,4 we effth 8 mkTv 

conclude that the SHR lifetimes are independent of effective mass.

The capture cross section given by Eq. (S8) is the capture cross section for capture into a 

neutral defect state. However, capture of electrons or holes into charged defects requires a 

correction factor called the Sommerfeld factor s. The Sommerfeld factor depends on whether 

the charges of the charge carrier and the defect have the same or an opposite sign. If the sign 

of the charge is the same, the defect is repulsive with s given by Eq. (6.5.38) in ref. 13. In this 

situation s is independent of effective mass. In the opposite case, the defect attracts the charge 

carrier Coulombically and the dimensionless Sommerfeld factor is given by13

. (S11)2
effH4
rkTm

mRZs





where Z is the ratio between the charge on the defect and the charge of the free carrier (i.e. Z 

= ±1 for a singly charged defect). The capture cross section a for an attractive defect will 

then be simply given by a = s, using Eq. (S8) for  and Eq (S11) for s. Thus, a high 

effective mass will further reduce the smaller of the two lifetimes. In high injection, the longer 



lifetime will dominate and therefore this effect will be minor. In low injection, it depends on 

the doping type and the charge states of the dominant defect, whether this effect will matter or 

not. In order to keep the discussion generic and simple, we did not include this effect in the 

simulations in the main paper, but we want to mention it here. 
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(c) high injection, indirect

 

 

(d) low injection, indirect

(a) high injection, direct                   (b) low injection, direct

 

 

Figure S2: In analogy with Fig. 1 in the main paper, this graph presents the open-circuit 
voltage VOC as a function of thickness and with the effective density of states as parameter 
(Neff = 1018, 1018.5, 1019, 1019.5, 1020 cm-3) for four different cases: The cases are all 
combinations of high and low level injection (intrinsic and doped semiconductor) and direct 
and indirect band gap semiconductors. Dashed lines represent the radiative limit and solid 
lines describe the case with a SRH lifetime n = p = 1 µs.
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Figure S3: (a) Short-circuit current density Jsc and (b) emission probability pe as a function of 
effective density of states at the optimum thickness as shown in Fig. 2b in the main paper. 
Both Jsc and pe are measures of the absorptance of the devices summed up in one parameter. 
Both do not depend strongly on Neff with the high injection/indirect band gap case being the 
one with the largest deviation from constant. This implies that the set of equations described 
in the main paper leads to a rather simple rule of thumb for the optimum thickness. The 
product of absorption coefficient and optimum thickness remains constant, when Neff or meff 
are changed. It does not stay constant when other parameters are varied, which explains why 
the Jsc and pe values are different comparing the four different scenarios with each other.
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