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S1. Synthesis of Propylamine Nitrate (PAN)

n-Propylamine (AR, purity ≥ 99.0%) and nitric acid (AR, 65−63% in water) used were 

purchased from Tianjin Chemical Reagents Co., China. PAN was prepared in our laboratory 

through base-acid reaction between n-propylamine and nitric acid, as shown in Scheme S1. 

Nitric acid that was prediluted to 20−25% in water was dropwise added to the equimolar 

quantity of n-propylamine at ~4 °C under magnetic stirring. The mixture was kept magnetic 

stirring at ~4 °C for 1 h to achieve complete reaction. Water in the crude product was 

removed using a rotary evaporator, and the resultant product was then dried under vacuum at 

65 °C until constant weight.
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Scheme S1 Synthesis of propylamine nitrate (PAN).
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(a)                                                     (b)

Fig. S1 Molecular structures of (a) bmimPF6 and (b) PAN.
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Fig. S2 1H NMR spectrum of PAN sample in D2O.

δ 0.884 (3H, t, −CH3), 1.588 (2H, m, −CH2CH3), and 2.882 (2H, t, −CH2NH3+). 

The H in −NH3+ can exchange with D in D2O, so the peak of −NH3+ is covered up 

by the characteristic peak of the solvent at 4.7 ppm. No miscellaneous peaks are 

observed, indicating the so-obtained PAN sample has a high purity. 
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Fig. S3 (A) Diffusion coefficient (Dp) of K3Fe(CN)6, (B) intensity ratio (I393/I373) of 

pyrene, and (C) λmax of MO in microemulsions at RB/P = 1/9 as a function of fw. 

Concentrations of K3Fe(CN)6, pyrene, and MO were 0.65 g·L−1, 4.95×10−5 

mol·L−1, and 0.005 g·L−1, respectively.
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Fig. S4 (A) Diffusion coefficient (Dp) of K3Fe(CN)6, (B) intensity ratio (I393/I373) of 

pyrene, and (C) λmax of MO in microemulsions at RB/P = 2/8 as a function of fw. 

Concentrations of K3Fe(CN)6, pyrene, and MO were 0.65 g·L−1, 4.95×10−5 

mol·L−1, and 0.005 g·L−1, respectively. 



0.90

0.91

0.92

0.93

0.94

0.00 0.05 0.10 0.15 0.20 0.25 0.30
436

440

444

448

452

456

0

2

4

6

8

10

(B)

RB/P= 3/7

 

I 39
3/I 37

3

(C)

IL/W

 m
ax

 o
f M

O
/n

m

BCW/IL

fw

(A)

 

D
P(10

-1
0 m

2 s-1
)

Fig. S5 (A) Diffusion coefficient (Dp) of K3Fe(CN)6, (B) intensity ratio (I393/I373) of 

pyrene, and (C) λmax of MO in microemulsions at RB/P = 3/7 as a function of fw. 

Concentrations of K3Fe(CN)6, pyrene, and MO were 0.65 g·L−1, 4.95×10−5 

mol·L−1, and 0.005 g·L−1, respectively. 
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Fig. S6 (A) Diffusion coefficient (Dp) of K3Fe(CN)6, (B) intensity ratio (I393/I373) of 

pyrene, and (C) λmax of MO in microemulsions at RB/P = 4/6 as a function of fw. 

Concentrations of K3Fe(CN)6, pyrene, and MO were 0.65 g·L−1, 4.95×10−5 

mol·L−1, and 0.005 g·L−1, respectively. 
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Fig. S7 (A) Diffusion coefficient (Dp) of K3Fe(CN)6, (B) intensity ratio (I393/I373) of pyrene, 

and (C) λmax of MO in microemulsions at RB/P = 5/5 as a function of fw. 

Concentrations of K3Fe(CN)6, pyrene, and MO were 0.65 g·L−1, 4.95×10−5 mol·L−1, 

and 0.005 g·L−1, respectively. 
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Fig. S8 Viscosity of bmimPF6/PAN/water ternary system with RB/P = 

2/8 as a function of fw.
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Fig. S9 Intensity ratio I393/I373 of pyrene as a function of PAN volume fraction 

(fPAN) in bmimPF6/PAN binary solution. The pyrene concentration is 

4.95×10−5 mol·L−1.
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Fig. S10 MO λmax as a function of fPAN in bmimPF6/PAN and water/PAN 

mixture solutions. The MO concentration is 0.005 g·L−1.

Fig. S11 Photograph of bmimPF6-water two-phase system containing MO. Bright 

orange of bmimPF6 phase (low phase) indicates that MO preferentially 

dissolves in bmimPF6 phase.



Fig. S12 Cryo-TEM images of samples with RB/P/W of (a) 0.286/0.667/0.047 in W/IL 

subregion, (b) 0.164/0.656/0.180 in BC subregion, and (c) 

0.056/0.500/0.444 in IL/W subregion.
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Fig. S13 Size distributions of dispersed droplets for the samples a2, a3, c2, c3, 

and c4 as marked in Fig. 1.


