Electronic Supplementary Information (ESI)

Surfactant-free microemulsions of 1-butyl-3-methylimidazolium hexafluorophosphate, propylamine nitrate, and water

Jie Xu,^a Huanhuan Deng,^a Yunlei Fu,^a Yuquan Chen,^a Jing Zhang,^a Wanguo Hou * ^b

^a State Key Laboratory Base of Eco-chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China;

^b Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P.R. China

S1. Synthesis of Propylamine Nitrate (PAN)

n-Propylamine (AR, purity \geq 99.0%) and nitric acid (AR, 65–63% in water) used were purchased from Tianjin Chemical Reagents Co., China. PAN was prepared in our laboratory through base-acid reaction between *n*-propylamine and nitric acid, as shown in Scheme S1. Nitric acid that was prediluted to 20–25% in water was dropwise added to the equimolar quantity of *n*-propylamine at ~4 °C under magnetic stirring. The mixture was kept magnetic stirring at ~4 °C for 1 h to achieve complete reaction. Water in the crude product was removed using a rotary evaporator, and the resultant product was then dried under vacuum at 65 °C until constant weight.

Scheme S1 Synthesis of propylamine nitrate (PAN).

Fig. S1 Molecular structures of (a) bmimPF₆ and (b) PAN.

Fig. S2 ¹H NMR spectrum of PAN sample in D_2O .

 δ 0.884 (3H, *t*, -C<u>H</u>₃), 1.588 (2H, *m*, -C<u>H</u>₂CH₃), and 2.882 (2H, *t*, -C<u>H</u>₂NH³⁺). The H in -NH³⁺ can exchange with D in D₂O, so the peak of -N<u>H</u>³⁺ is covered up by the characteristic peak of the solvent at 4.7 ppm. No miscellaneous peaks are observed, indicating the so-obtained PAN sample has a high purity.

Fig. S3 (A) Diffusion coefficient (D_p) of K₃Fe(CN)₆, (B) intensity ratio (I_{393}/I_{373}) of pyrene, and (C) λ_{max} of MO in microemulsions at $R_{B/P} = 1/9$ as a function of f_w . Concentrations of K₃Fe(CN)₆, pyrene, and MO were 0.65 g·L⁻¹, 4.95×10⁻⁵ mol·L⁻¹, and 0.005 g·L⁻¹, respectively.

Fig. S4 (A) Diffusion coefficient (D_p) of K₃Fe(CN)₆, (B) intensity ratio (I_{393}/I_{373}) of pyrene, and (C) λ_{max} of MO in microemulsions at $R_{B/P} = 2/8$ as a function of f_w . Concentrations of K₃Fe(CN)₆, pyrene, and MO were 0.65 g·L⁻¹, 4.95×10⁻⁵ mol·L⁻¹, and 0.005 g·L⁻¹, respectively.

Fig. S5 (A) Diffusion coefficient (D_p) of K₃Fe(CN)₆, (B) intensity ratio (I_{393}/I_{373}) of pyrene, and (C) λ_{max} of MO in microemulsions at $R_{B/P} = 3/7$ as a function of f_w . Concentrations of K₃Fe(CN)₆, pyrene, and MO were 0.65 g·L⁻¹, 4.95×10⁻⁵ mol·L⁻¹, and 0.005 g·L⁻¹, respectively.

Fig. S6 (A) Diffusion coefficient (D_p) of K₃Fe(CN)₆, (B) intensity ratio (I_{393}/I_{373}) of pyrene, and (C) λ_{max} of MO in microemulsions at $R_{B/P} = 4/6$ as a function of f_w . Concentrations of K₃Fe(CN)₆, pyrene, and MO were 0.65 g·L⁻¹, 4.95×10⁻⁵ mol·L⁻¹, and 0.005 g·L⁻¹, respectively.

Fig. S7 (A) Diffusion coefficient (D_p) of K₃Fe(CN)₆, (B) intensity ratio (I_{393}/I_{373}) of pyrene, and (C) λ_{max} of MO in microemulsions at $R_{B/P} = 5/5$ as a function of f_w . Concentrations of K₃Fe(CN)₆, pyrene, and MO were 0.65 g·L⁻¹, 4.95×10⁻⁵ mol·L⁻¹, and 0.005 g·L⁻¹, respectively.

Fig. S8 Viscosity of bmimPF₆/PAN/water ternary system with $R_{\rm B/P} = 2/8$ as a function of $f_{\rm w}$.

Fig. S9 Intensity ratio I_{393}/I_{373} of pyrene as a function of PAN volume fraction (f_{PAN}) in bmimPF₆/PAN binary solution. The pyrene concentration is 4.95×10^{-5} mol·L⁻¹.

Fig. S10 MO λ_{max} as a function of f_{PAN} in bmimPF₆/PAN and water/PAN mixture solutions. The MO concentration is 0.005 g·L⁻¹.

Fig. S11 Photograph of $\text{bmim}PF_6$ -water two-phase system containing MO. Bright orange of $\text{bmim}PF_6$ phase (low phase) indicates that MO preferentially dissolves in $\text{bmim}PF_6$ phase.

Fig. S12 Cryo-TEM images of samples with $R_{B/P/W}$ of (a) 0.286/0.667/0.047 in W/IL subregion, (b) 0.164/0.656/0.180 in BC subregion, and (c) 0.056/0.500/0.444 in IL/W subregion.

Fig. S13 Size distributions of dispersed droplets for the samples a_2 , a_3 , c_2 , c_3 , and c_4 as marked in Fig. 1.