Electronic Supplementary Information

2D MoS₂/Polyaniline Heterostructures with Enlarged Interlayer Spacing for Superior Lithium and Sodium Storage

Haiyan Wang,^[a] Hao Jiang,^[a]* Yanjie Hu,^[a] Neng Li,^[b]* Xiujian Zhao,^[b] Chunzhong Li^[a]*

^[a] Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and

Engineering, East China University of Science and Technology, Shanghai 200237, China

^[b] State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China

* Corresponding author: Tel.: +86-21-64250949, Fax: +86-21-64250624

E-mail: jianghao@ecust.edu.cn (Prof. H. Jiang), lineng@whut.edu.cn (Prof. N. Li) and

czli@ecust.edu.cn (Prof. C. Z. Li)

1. Figures

Fig. S1 (a) SEM and (b) TEM images of the MoS₂/OA nanosheets.

Fig. S2 The amidation reaction equation of OA and aniline.

Fig. S3 XPS spectra of MoS₂/OA and MoS₂/PANI for (a) C and (b) Mo. As depicted, after the reaction with PANI, the peak corresponding to C=O at 286.4 eV shifts to 287 eV, conforming the amidation process between oleic acid and aniline. For Mo 3d spectra, the MoS₂-OA shows large double peaks at 228.6 eV ($3d_{5/2}$) and 231.8 eV ($3d_{3/2}$) and small double peaks at 230.2 eV ($3d_{5/2}$) and 233.1 eV ($3d_{3/2}$) as an evidence for the formation of MoS₂ consisting of the 1T and 2H phases. As for MoS₂/PANI, the peaks indicate an increasing of 1T phase and a decreasing of 2H phase of MoS₂, suggesting a nearly monolayer MoS₂ nanosheet, which is mainly benefit form the PANI layer in the MoS₂ interlayer effectively avoiding their stacking/restacking. The peak Mo⁶⁺ 3d_{5/2} at 235.5 eV emerges because of partial oxidation during fabrication process. Moreover, both C and Mo peaks show a slight shift to high energy regions, indicating an electronic interaction between MoS₂ and PANI.

Fig. S4 TEM image of the annealed MoS_2 nanosheets.

Fig. S5 TG curves of the $MoS_2/PANI$ hybrids with different PANI content.

Fig. S6 SEM image of the MoS_2 /PANI hybrids with 39% PANI content.

Fig. S7 Nyquist plots of the $MoS_2/PANI$ hybrids, the $MoS_2@PANI$ hybrids and the annealed MoS_2 nanosheets in LIBs.

Fig. S8 Nyquist plots of the $MoS_2/PANI$ hybrids, the $MoS_2@PANI$ hybrids and the annealed MoS_2 nanosheets in SIBs.

Fig. S9 TEM image of the 2D MoS_2 /PANI nanosheets after 100 cycles in LIBs.

2. Tables

Materials	Interlayer spacing	LIBs performance	Ref.
Mesoporous MoS ₂	0.66 nm	903, 845, 795 and 748 mAh g ⁻¹ at 100, 500, 1000 and 2000 mA g ⁻¹	[1]
MoS ₂ nanoplates	0.69 nm	912 mAh g ⁻¹ at 1062 mA g ⁻¹	[1]
3D hierarchical MoS ₂ /polyaniline	0.64 nm	798 mA h g ⁻¹ at 100 mA g ⁻¹ , 439 mA h g ⁻¹ at 1000 mA g ⁻¹	[3]
MoS ₂ /polyaniline nanowires	0.61 nm	1006 at 200 mA g ⁻¹ , 320 mA h g ⁻¹ at 1000 mA g ⁻¹	[4]
MoS ₂ @C nanotubes	0.64 nm	1326.9, 1074.2, 993.1, and 929 mA h g ⁻¹ at 100, 500, 1000, and 2000 mA g ⁻¹	[5]
MoS ₂ nanoplates	Single-layer	1095, 986 mAh g ⁻¹ at 500, 1000 mA g ⁻¹	[6]
3D MoS ₂ @Fe ₃ O ₄ nanohybrid	Single-layer	1183, 1019 and 910 mA h g ⁻¹ at 100, 500 and 1000 mA g ⁻¹	[7]
MoS ₂ @CMK-3	0.65 nm	893, 773, 713 and 591 mAh g ⁻¹ at 100, 500, 1000 and 2000 mA g ⁻¹	[8]
3D MoS ₂ @porous carbon nanosheet	0.65 nm	1060, 950, 880 and 710 mA h g ⁻¹ at 200, 500, 1000 and 2000 mA g ⁻¹	[9]
3D MoS ₂ nanospheres	0.71 nm	1184.8, 882.7, 601.5, and 353.6 mAh g ⁻¹ at 100, 500, 1000 and 2000 mA g ⁻¹	[10]
PANI/MoS ₂ hybrids	1.08 nm	1319, 1285, 1247, 1152, 1077, 1029 and 885 mA h g ⁻¹ at 100, 200, 500, 1000, 1500, 2000 and 4000 mA g ⁻¹	This work

Table S1. Comparison of LIBs performances of MoS₂-based anode materials.

Materials	Interlayer spacing	SIBs performance	Ref.
MoS ₂ @C nanotubes	0.64 nm	610, 560, 430 mA h g ⁻¹ at 50, 100 and 1000 mA g ⁻¹	[5]
MoS ₂ nanoplates	Singlelayer	854, 623 mA h g ⁻¹ at 100 and 1000 mA g ⁻¹	[6]
TiO ₂ -B/MoS ₂ nanowires	0.64 nm	214 mA h g ⁻¹ at 20 mA g ⁻¹ , 173 mA h g ⁻¹ at 100 mA g ⁻¹ , 77 mA h g ⁻¹ at 1000 mA g ⁻¹	[11]
Exfoliated MoS ₂ nanosheets	0.638 nm	500 mA h g ⁻¹ , 305 mA h g ⁻¹ at 40 mA g ⁻¹ , 320 mA g ⁻¹	[12]
3D MoS ₂ –graphene microspheres	0.69 nm	427 mA h g ⁻¹ at 1000 mA g ⁻¹	[13]
MoS ₂ /C nanofibers	0.64 nm	400.6 mA h g^{-1} at 50 mA g^{-1} , 369.7 mA h g^{-1} at 100 mA g^{-1} , 246.5 mA h g^{-1} at 1000 mA g^{-1}	[14]
MoS ₂ /C nanospheres	Not Mentioned	520 mA h g ⁻¹ at 67 mA g ⁻¹ , 390 mA h g ⁻¹ at 1340 mA g ⁻¹	[15]
MoS ₂ @C paper	0.62 nm	446, 205 mA h g ⁻¹ at 20, 1000 mA g ⁻¹	[16]
HfO ₂ -coated MoS ₂ nanosheet	0.62 nm	613 mAh g^{-1} at 100 mA g^{-1} , 347 mAh g^{-1} at 1000 mA g^{-1}	[17]
MoS ₂ nanoflowers	0.69 nm	200 mAh g ⁻¹ at 1000 mA g ⁻¹	[18]
PANI/MoS ₂ hybrids	1.08 nm	734, 634, 584, 510, 465 and 391 mA h g ⁻¹ at 20, 50, 100, 300, 600 and 1000 mA g ⁻¹	This work

Table S2. Comparison of SIBs performance of MoS_2 -based anode materials.

3. References

- 1. H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, S. Qiao, Adv. Energy Mater., 2012, 2, 970–975.
- 2. H. Hwang, H. Kim, J. Cho, Nano Lett., 2011, 11, 4826-4830.
- 3. L. Hu, Y. Ren, H. Yang, Q. Xu, ACS Appl. Mater. Interfaces, 2014, 6, 14644–14652.
- 4. L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O. G. Schmidt, Adv. Mater., 2013, 25, 1180–1184.
- 5. X. Zhang, X. Li, J. Liang, Y. Zhu, Y. Qian, Small, 2016, 12, 2484–2491.
- 6. C. Zhu, X. Mu, P. A. van Aken, Y. Yu, J. Maier, Angew. Chem. Int. Ed., 2014, 53, 2152-2156.
- 7. X. Zhu, K. Wang, D. Yan, S. Le, R. Ma, K. Sun, Y. Liu, Chem. Commun., 2015, 51, 11888–11891.
- 8. X. Xu, Z. Fan, X. Yu, S. Ding, D. Yu, X. Lou, Adv. Energy Mater., 2014, 4, 1400902.
- 9. J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, ACS Nano, 2015, 9, 3837-3848.
- 10. S. Zhang, B. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano, 2015, 12, 12464–12472.
- 11. J. Liao, B. D. Luna, A. Manthiram, J. Mater. Chem. A, 2016, 4, 801-806.
- 12. D. Su, S. Dou, G. Wang, Adv. Energy Mater., 2014, 5, 1401205.
- 13. S. H. Choi, Y. N. Ko, J. Lee, Y. C. Kang, Adv. Funct. Mater., 2015, 25, 1780-1788.
- 14. X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Sci. Rep., 2015, 5, 9254.
- 15. J. Wang, C. Luo, T. Gao, A. Langrock, A. C. Mignerey, C. Wang, Small, 2015, 11, 473–481.
- X. Xie, T. Makaryan, M. Zhao, K. L. Van Aken, Y. Gogotsi, G. Wang, *Adv. Energy Mater.*, 2016, 6, 1502161.
- 17. B. Ahmed, D. H. Anjum, M. N. Hedhili, H. N. Alshareef, Small, 2015, 11, 4341-4350.
- Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, *Angew. Chem.*, 2014, **126**, 13008–13012.

Movies S1-S4.