Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting information

Effect of Composition and Nanostructuring of Palladium Selenides, Pd₄Se, Pd₇Se₄ and Pd₁₇Se₁₅ on Oxygen Reduction Activity and Their use in Mg-Air Batteries

Suresh Kukunuri, Keerti Naik, S. Sampath*

Figure S1. SEM images and corresponding elemental mapping of (a) $Pd_{17}Se_{15}$, (b) Pd_7Se_4 and (c) Pd_4Se [mapping images indicates the presence of Se and Pd in all the three nanostructures and inset in a, b and c indicates the respective weight percentages of Pd and Se from EDAX analysis].

Fig S2. XRD patterns of Pd₇Se₄ (a) and Pd₄Se (b) nanostructures prepared on AAO template.

Figure S3. Cyclic voltammograms of (a) Pd_7Se_4 and (b) Pd_4Se in the presence of N_2 and O_2 in 0.1 M KOH solution at a scan rate of 50 mVs⁻¹.

Figure S4. (a) Cyclic voltammograms of $Pd_{17}Se_{15}$ in N₂-saturated, O₂-saturated and in the presence of dissolved O₂, (b) Variation of peak current density as a function of square root of scan rate on $Pd_{17}Se_{15}$ in O₂-saturated 0.1 M KOH solution.

Figure S5. K-L plots at different potentials from -0.2 to -0.5 V in the interval of -0.05 V on $Pd_{17}Se_{15}$, Pd_7Se_4 and Pd_4Se recorded at a scan rate of 2 mVs⁻¹.

Determination of kinetic parameters

The kinetic parameters such as rate constant, kinetic current density and number of electrons transferred during O_2 reduction are extracted from the voltammograms at different potentials and at different rotation speeds using Koutecky-Levich (K-L) equation as given below (equation 1).

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{B\omega^{1/2}}$$
(1)

where i is the measured current, i_k is the kinetic current and ω is the electrode rotating rate. The value of Levich slope (B) is evaluated from the following equation 2.

$$B = 0.62nFC_{0}D_{0}^{2/3}v^{-1/6}$$
⁽²⁾

where n indicates the transferred electrons number per O₂ molecule, F is the Faraday constant (F = 96485 C mol⁻¹), C_{O_2} is the concentration of O₂ in the electrolyte (C₀ = 1.2 x 10⁻⁶ molm⁻³) D_{O_2} is the diffusion coefficient of O₂ (D₀ = 1.9 x 10⁻⁵ cm² s⁻¹), and v is the kinematic viscosity (v = 0.01 cm² s⁻¹).⁴⁰

Figure S6. Tafel plots for ORR on (a) $Pd_{17}Se_{15}$, (b) Pd_7Se_4 and (c) Pd_4Se in O₂-saturated 0.1 M KOH with a scan rate of 2 mVs⁻¹.

Figure S7. (a) Cyclic voltammograms for ORR in absence (black) and in presence (red) of 1 M methanol on $Pd_{17}Se_{15}$ catalyst. Supporting electrolyte used is 0.1 M KOH with a sweep rate of 50 mVs⁻¹, (b) Retention of current vs. cycle number at different applied potentials (Supporting electrolyte is O₂ saturated 0.1 M KOH and scan rate of 100 mVs⁻¹).

Different environments present around Pd

Pd₁₇Se₁₅

Pd₇Se₄

Figure S8. Different environment present around palladium in the three different phases, Pd₁₇Se₁₅, Pd₇Se₄ and Pd₄Se.

Table	S1.	Variation	of	rate	constant	values	at	different	potentials	on	$Pd_{17}Se_{15}$	bulk	and
nanost	ructu	ures.											

Potential (V)	Pd ₁₇ Se ₁₅ (bulk) / cm sec ⁻¹	Pd ₁₇ Se ₁₅ (nanorods) / cm sec ⁻¹
-0.2	8.4 x 10 ⁻³	2.3 x 10 ⁻²
-0.3	$1.1 \ge 10^{-2}$	2.8 x 10 ⁻²
-0.4	1.3 x 10 ⁻²	3 .1 x 10 ⁻²
-0.5	1.5 x 10 ⁻²	3.5 x 10 ⁻²

Figure S9. Cyclic voltammograms of Pd and $Pd_{17}Se_{15}$ on a glassy-carbon disk electrode in N₂saturated 0.5 M H₂SO₄ with scan rate of 50 mVs⁻¹. [circled region indicates the absence of oxidation of palladium in Pd₁₇Se₁₅ which is also shown in the inset]. Cu under potential deposition (UPD) stripping voltammograms on (b) Pd₁₇Se₁₅ nanorods in 0.5 M H₂SO₄ + 2 mM CuSO₄ saturated with nitrogen at a sweep rate of 10 mV/s. Respective background voltammograms at the same scan rate without CuSO₄ are also shown.

Figure S10. (a) XRD patterns of $Pd_{17}Se_{15}$ powder (i), acetylene black- $Pd_{17}Se_{15}$ (ii), rGO- $Pd_{17}Se_{15}$ (iii) and the standard pattern of $Pd_{17}Se_{15}$ (iv) and (b) XRD pattern of $Pd_{17}Se_{15}$ on toray carbon. [Inset shows the enlarged region from 30 to 60°]

Figure S11. Raman spectra of (a) Toray carbon and (b) only toray carbon and $Pd_{17}Se_{15}$ supported on toray carbon.

Figure S12. SEM images of (a) GO, (b) GO-Pd₁₇Se₁₅, (d) acetylene black, (e) acetylene black-Pd₁₇Se₁₅, (g) toray carbon, (h) toray carbon-Pd₁₇Se₁₅ and (c), (f) & (i) are the corresponding EDAX images of the composites.

Figure S13. Cyclic voltammograms of (a) $Pd_{17}Se_{15}$ -acetylene black, (b) $Pd_{17}Se_{15}$ -reduced graphene oxide, (c) $Pd_{17}Se_{15}$ -toray carbon and (d) $Pd_{17}Se_{15}$ nanostructures in N_2 and O_2 -saturated 0.1 M KOH solution.

Figure S14. Linear sweep voltammograms of (a) $Pd_{17}Se_{15}$ -acetylene black, (b) $Pd_{17}Se_{15}$ -reduced graphene oxide, (c) $Pd_{17}Se_{15}$ nanostructures in O₂-saturated 0.1 M KOH at scan rate of 2 mVs⁻¹ at different rotation rates from 400 to 2400 rpm in the interval of 400 and (d), (e) & (f) corresponding K-L plots at different potentials vs. MMO.

Figure S15. XPS spectra of (a) Pd-3d and (b) Se-3d for (i) $Pd_{17}Se_{15}$, (ii) acetylene black- $Pd_{17}Se_{15}$, (iii) rGO-Pd₁₇Se₁₅ and (iv) toray carbon-Pd₁₇Se₁₅.

Table S2: Binding energy values of Pd-3d and Se-3d levels in different carbon composite materials.

Material	Pd-3d _{5/2} (eV)	Pd-3d _{3/2} (eV)	Se-3d _{5/2} (eV)	Se-3d _{5/2} (eV)
Pd ₁₇ Se ₁₅	336.1	341.3	53.8	54.7
rGO-Pd ₁₇ Se ₁₅	336.2	341.4	54.2	54.9
AB-Pd ₁₇ Se ₁₅	336.5	341.8	54.5	55.4
TC-Pd ₁₇ Se ₁₅	336.6	341.9	54.6	55.5

Figure S16. Cyclic voltammograms recorded in 2.6 M Mg(NO₃)₂ + 3.6 M NaNO₂ at a scan rate of 100 mVs⁻¹ in O₂ and N₂ saturated conditions.

Figure S17. SEM images of Pd_4Se (a) before [(c) presence of Pd and Se] and (b) after discharge [(d) presence of Pd and Se along with increased oxygen content] of Mg-air battery.

Figure S18. XRD patterns of (a) Pd_4Se (b) Pd_7Se_4 , (c) $Pd_{17}Se_{15}$ and (d) Pt, before and after discharge of Mg-air primary batteries.

Figure S19. XRD pattern and the corresponding standard pattern of $Mg(OH)_2$ formed on the Mg foil after battery discharge.

Figure S20. Discharge curves of Mg-O₂ battery with bulk $Pd_{17}Se_{15}$, $Pd_{17}Se_{15}$ supported on rGO and $Pd_{17}Se_{15}$ nanorods as cathodes. Constant current density of 1 mA cm⁻² is used for discharge.

Table S3: Comparison of discharge capacity values of palladium selenides with other	er reported
catalysts in literature.	

Anode	Cathode	Electrolyte	Operating Voltage (V)	Discharge capacity (mAh g ⁻¹)	References
AMX602 and AM60 alloys	Activated carbon sheet	5 mass% NaCl	~ 0.65	1331	<i>J. Power Sources</i> , 2015 , <i>297</i> , 449
Mg foil	Ag	Organic/Aqueous	~ 0.8	2020	<i>J. Power Sources</i> , 2014, <i>247</i> , 840
Mg-Li- Al-Ce alloy	Silver	3.5 wt % NaCl	~ 1.27	2072	<i>J. Power Sources</i> , 2011 , <i>196</i> , 2346
Mg piece	Pt/C, Pt–Mo/C	3.5 wt % NaCl	~ 1.3	1311	<i>RSC Adv.</i> , 2016 , <i>6</i> , 83025
Mg nano/ micro spheres	γ-MnO ₂	$2.6 \text{ M Mg}(\text{NO}_3)_2$ $+ 3.6 \text{ M NaNO}_2$	~ 1.5	768	Nano Research, 2009 , <i>2</i> , 713
Mg micro particles	Pd₄Se	2.6 M Mg(NO ₃) ₂ + 3.6 M NaNO ₂	~ 0.9	2228	Present work