Oxygen-Induced Defects at the Lead Halide

Perovskite/Graphene Oxide Interfaces

Muge Acik,^{a,*} In Kee Park,^b Rachel E. Koritala,^a Geunsik Lee,^b Richard A. Rosenberg^c

^aCenter for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439

^bDepartment of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Korea

689-798

^cAdvanced Photon Source, X-ray Science Division, Argonne National Laboratory, Lemont, IL

60439

*Corresponding Author: macik@anl.gov

Figure S1. a) Top-down SEM image of a continuous GO (3-5 layers) thin film with natural wrinkles and ripples as shown with a high magnification image in (b). The scale bars represent 100 μ m and 1 μ m in (a)-(b), respectively. c) AFM image of a GO (3-5 L) with a thickness of 5-10 nm, and an average surface roughness of R_{max}~20 nm shown with a 3D topography (500x500 nm) in (d).

Figure S2. Top-down SEM image of GO (1L) thin film with unevenly distributed random flakes on an area scaled by a scale bar of 100 μ m.

Figure S3. AFM images of a) spin casting (40 μ l solution at a spin rate of 4000 rpm in 30s) of precursors (MABr and PbBr₂) on a Si/SiO₂ substrate at room temperature, and b) after annealing at 130°C for MAPbBr₃ growth, c) spin casting of MABr and PbBr₂ on a GO thin film at room temperature, and d) at 130°C. The numbers at the top right corner of each image indicates the height profile measured at the center on a vertical line. Scale bars are given in a 1 μ m scale.

Figure S4. AFM images of a) spin casting (40 μ l solution at a spin rate of 4000 rpm in 30s) of precursors (MAI and PbI₂) on a Si/SiO₂ substrate at room temperature, and b) after annealing at 130°C for MAPbI₃ growth, c) spin casting of MAI and PbI₂ on a GO thin film at room temperature, and d) at 130°C. The numbers at the top right corner of each image indicates the height profile measured at the center on a vertical line. Scale bars are given in a 1 μ m scale.

Figure S5. AFM images of a) spin casting (40 μ l solution at a spin rate of 4000 rpm in 30s) of precursors (MACl and PbCl₂) on a Si/SiO₂ substrate at room temperature, and b) after annealing at 130°C for MAPbCl₃ growth, c) spin casting of MACl and PbCl₂ on a GO thin film for MAPbCl₃ growth on GO at room temperature, and d) at 130°C. The numbers at the top right corner of each image indicate the height profile measured at the center on a vertical line. Scale bars are given in a 1-2 μ m scale.

Figure S6. SEM images of MAPbI₃ a) after spin coating of precursors on a Si/SiO₂ substrate at 130°C, b) after of spin-coated precursors of MAI and PbI₂ on a GO (3-5 layers) thin film at room temperature, and c) after annealing at 130°C for MAPbI₃ growth on GO. SEM images of MAPbCl₃ d) after spin coating of the precursors on a Si/SiO₂ substrate at 130°C, e) spin-coated precursors of MAI and PbI₂ on a GO (3-5 layers) thin film at room temperature, and PbI₂ on a GO (3-5 layers) thin film at room temperature, and f) after annealing at 130°C for MAPbCI₃ growth on GO. The scale bars for each SEM image indicates 1 μm.

Figure S7. SEM images of MAPbI₃ (a-b), MAPbBr₃ (c-d), and MAPbCl₃ (e-f) crystals grown at 130°C on a) Si/SiO₂ and b) GO (3-5L), respectively. Scale bars indicate a scale of 10 μ m.

Figure S8. SEM images of MAPbI₃ (a-b), MAPbBr₃ (c-d), and MAPbCl₃ (e-f) crystals grown at 130°C on a) Si/SiO₂ and b) GO (3-5L), respectively. Scale bars indicate a scale of 100 μ m.

Figure S9. Optical microscope images of a) MAPbI₃, b) MAPbBr₃, and c) MAPbCl₃ crystals grown at 130°C on Si/SiO₂. Scale bars indicate a scale of 10 μm.

Figure S10. Top-down SEM images of MAPbI₃ crystals spin coated on a Si/SiO₂ from a DMF solution and further annealed for 2h (a-c), 6h (d-f), and 12h (g-i) at 60°C, as shown with images from low to high magnification (left to right).

Figure S11. X-ray diffraction pattern of the precursors, namely PbI_2 (a) and CH_3NH_3I (b) spin coated in DMF (0.1g/ml) on a Si/SiO₂ substrate for MAPbI₃ growth. X-ray diffraction pattern of the precursors, namely $PbBr_2$ (c) and CH_3NH_3Br (d) spin coated in DMF (0.1g/ml) on a Si/SiO₂ substrate for MAPbBr₃ growth. X-ray diffraction pattern of the precursors, namely $PbCl_2$ (a) and CH_3NH_3Cl (b) spin coated in DMF (0.1g/ml) on a Si/SiO₂ substrate for MAPbCl₃ growth.

Figure S12. Infrared absorbance spectra of a) CH_3NH_3I , b) CH_3NH_3Br , and c) CH_3NH_3Cl spin coated in in DMF (0.1g/ml) on a Si/SiO₂ substrate, and referenced to infrared absorbance spectrum of a bare Si/SiO₂ for background subtraction.

Figure S13. *In situ* differential infrared absorbance spectra of MAPbI₃ growth on i) Si/SiO₂ at a) 20-100°C, b) 100-150°C, c) 150-200°C, and d) 200-300°C, respectively. MAPbI₃ growth on ii) on a GO (3-5L) thin film at a) 20-60°C, b) 60-80°C, c) 80-100°C, d) 100-150°C, e) 150-200°C, and f) 200-300°C, respectively. Each spectrum is referenced to previous temperature to monitor the growth, and a baseline correction is applied. The baseline is given as the dotted line.

Figure S14. *In situ* transmission infrared absorbance spectra of a) spin-casted MABr from a DMF solution on a Si/SiO₂ substrate, b) spin coating of precursors (MABr and PbBr₂) from a 40 wt.% DMF solution on a Si/SiO₂ at room temperature (~20°C), and after annealing in argon at c) 100°C, (d) 150°C, and (e) 200°C for MAPbBr₃ growth on Si/SiO₂. The dotted lines indicate a baseline for each of the infrared spectrum obtained after subtracting the infrared spectrum of Si/SiO₂.

Figure S15. *In situ* differential infrared absorbance spectra of MAPbBr₃ growth on i) Si/SiO₂ at a) 20-100°C, b) 100-150°C, c) 150-200°C, and d) 200-300°C, respectively. MAPbBr₃ growth on ii) on a GO (3-5L) thin film at a) 20-60°C, b) 60-80°C, c) 80-100°C, d) 100-150°C, e) 150-200°C, and f) 200-300°C, respectively. Each spectrum is referenced to previous temperature to monitor the growth, and a baseline correction is applied. The baseline is given as the dotted line.

Figure S16. X-ray diffraction patterns for the growth of methylammonium lead chloride (MAPbCl₃) spin-coated from a 40 μ l of DMF solution (i) on a Si/SiO₂ substrate at a spin rate of 4000 rpm in 30s a) at room temperature (~20°C), and further annealed on a hot plate at b) 60°C, c) 80°C, d) 100°C, e) 150°C, f) 175°C, g) 200°C, and h) 300°C for ~30 min. in a nitrogen glove box. X-ray diffraction patterns for the growth of methylammonium lead chloride (MAPbCl₃) spin-coated from a 40 μ l of DMF solution (ii) on a Si/SiO₂ substrate at a spin rate of 4000 rpm in 30s a) at room temperature (~20°C), and further annealed on a hot plate at b) 60°C, e) 150°C, f) 175°C, g) 200°C, and h) 300°C for ~30 min. in a nitrogen glove box.

Figure S17. (i) *In situ* transmission infrared absorbance spectra of a) spin-casted MACl from a DMF solution on a Si/SiO₂ substrate as a control, b) spin coating of precursors (MACI and PbCI₂) from a 40 wt.% DMF solution on a Si/SiO₂ at room temperature (~20°C), and after annealing in argon at c) 75°C, (d) 100°C, and (e) 150°C for MAPbCl₃ growth on Si/SiO₂. (ii) *In situ* transmission infrared absorbance spectra of a) a GO thin film (3-5 layers) deposited on a Si/SiO₂ prior to any perovskite growth, b) spin coating of precursors (MACI and PbCl₂) from a 40 wt.% DMF solution on GO (a) at room temperature (~20°C), and after annealing in argon at c) 60°C, (d) 80°C, (e) 100°C, f) 150°C, (g) 200 °C, and (h) 300°C for MAPbCl₃ growth on GO.

Figure S18. *In situ* differential infrared absorbance spectra of MAPbCl₃ growth on i) Si/SiO₂ at a) 20-75°C, b) 75-100°C, c) 100-150°C, d) 150-200°C, and e) 200-300°C, respectively. MAPbCl₃ growth on ii) on a GO (3-5L) thin film at a) 20-60°C, b) 60-80°C, c) 80-100°C, d) 100-150°C, e) 150-200°C, and f) 200-300°C, respectively. Each spectrum is referenced to previous temperature to monitor the growth, and a baseline correction is applied. The baseline is given as the dotted line.

Figure S19. Pb 4f XPS spectra of spin-coated MACl and PbCI₂ a) on a Si/SiO₂ substrate with a further annealing at 130°C for MAPbCI₃ growth, and b) on a GO thin film (3-5 layers) at room temperature, c) after annealing at 130°C for MAPbCI₃ growth on GO indicating metallic lead (Pb⁰) bands at 136.9 eV and 141.8 eV. Cl 2p XPS spectra of spin-coated MACI and PbCI₂d) on a Si/SiO₂ substrate with a further annealing at 130°C for MAPbCI₃ growth, and e) on a GO thin film (3-5 layers) at room temperature, f) after annealing at 130°C.

Figure S20. *In situ* micro Raman spectra of MAPbI₃ (CH₃NH₃PbI₃) grown at 130°C from a 40 wt.% of DMF solution deposited a) on a GO (3-5L) thin film and b) on a Si/SiO₂ substrate. c) Raman spectrum of PbI₂ deposited on a Si/SiO₂ from a 40 wt.% of DMF solution at room temperature. Each spectrum is collected at 633 nm laser exposure.

Figure S21. *In situ* micro Raman spectra of MAPbI₃ (CH₃NH₃PbI₃) grown from a 40 wt.% of DMF solution deposited on a GO (3-5L) thin film a) at 130°C (red spectrum) and b) at room temperature (black spectrum). Each spectrum is collected at 633 nm laser exposure.

Figure S22. *In situ* micro Raman spectra of MAPbBr₃ (CH₃NH₃PbBr₃) grown from a 40 wt.% of DMF solution deposited on a GO (3-5L) thin film a) at 20°C (black spectrum), b) at 60°C (red spectrum), and c) at 130°C (blue spectrum). Each spectrum is collected at 633 nm laser exposure.

Figure S23. Atomic representation of chemical reactions for the dissociation and decomposition of the lead halide precursors given in Table 1.

Figure S24. Atomic representation of chemical reactions for between the acid by-products and the oxygen groups of GO summarized in Table 1.

Figure S25. Cross-sectional SEM analysis of the GO/MAPbI₃ interface captured at the 20k (a) and 40k magnifications from different sections of the sample (b-c), and the RGO/MAPbI₃ interface at the 20k (d) and 40k (e) magnifications. The thickness of MAPbI₃ and GO/RGO is ~ 400-500 nm and ~200 nm, respectively.

Figure S26. Cross-sectional SEM analysis of the GO/MAPbBr₃ interface captured at 20k (a) and 40k magnifications (b), and the RGO/MAPbI₃ interface at 20k (c) and 40k (f) magnifications. The thickness of MAPbBr₃ and GO/RGO is ~400-500 nm and ~200 nm, respectively.

Figure S27. XRD analysis of the MAPbI₃ growth (130°C for 2 hours) on GO (a) and on RGO annealed at 200°C for 2 hours in nitrogen (b). XRD analysis of MAPbBr₃ growth (130°C for 2 hours) on GO (c), and on RGO (d). The thin films of GO and RGO are deposited on the Si/SiO₂ substrates.

Figure S28. The proposed mechanism for the MAPbX₃ growth on GO for the removal of a) hydroxyls, b) epoxides, and c) carboxyls from GO. X corresponds to the halides (I, Br and Cl). The epoxides disappear for only MAPbBr₃ and MAPbCl₃ growth on GO at room temperature. Hydroxyls and carboxyls remove at elevated temperatures for MAPbI₃ growth on GO, which is included room temperature mechanism in (c) of MAPbBr₃ and MAPbCl₃.

Figure S29. X-ray photoelectron spectroscopy (XPS) for Ag3d analysis for the peak calibration with the paste on the edges of the samples deposited on a Si/SiO_2 or on a GO thin film.