Supporting Information

β-Ni(OH)₂ nanosheet: an effective sensing platform for constructing

nucleic acid-based optical sensor

Hui Zhou,^{a,b} Jun Bing Peng,^b Xinlan Qiu,^a Yan Sha Gao,^a Limin Lu,^{*a} Wenmin Wang^a

a. College of Science, Jiangxi Agricultural University, Nanchang 330045, PR China.

b. College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.

1. Experimental Section

Name	Sequence (5'-3')
5-F	FAM- CCA TC
9-F	FAM- CCA TCT TTA
13-F	FAM- CCA TCT TTA CCA G
17-F	FAM- CCA TCT TTA CCA GAC AG
22-F	FAM- CCA TCT TTA CCA GAC AGT GTT A
22-C	Cy3 - CCA TCT TTA CCA GAC AGT GTT A
P-141	FAM - CCA TCT TTA CCA GAC AGT GTT A -FAM
MB	FAM-CCTCCACCCATCTTTACCAGACAGTGTTAGTGGAGG-BHQ1
miRNA-141	U AAC ACU GUC UGG UAA AGA UGG
miRNA-429	U AA <mark>U</mark> ACU GUC UGG UAA A <mark>AC C</mark> GU
miRNA-200b	U AA <mark>U</mark> ACU G <mark>C</mark> C UGG UAA <mark>U</mark> GA UG <mark>A</mark>
SmiRNA-141	U AAC ACU GUC U <mark>A</mark> G UAA AGA UGG
miRNA-21	U AGC UUA UCA GAC UGA UGU UGA
P-21	TAMRA - TCA ACA TCA GTC TGA TAA GCT A - TAMRA
DNA-141	T AAC ACT GTC TGG TAA AGA TGG

Table S1. Sequences of miRNAs and DNA probes used in this work

SmiRNA-141 is a single-base mismatched RNA, and the mismatched position is marked in red. The underlined sequence of MB is designed to recognize miRNA-141 and form MB/miRNA duplex. DNA-141 is a ssDNA with same sequences as miRNA-141.

2. Supplementary results

Fig. S1 Quenching efficiency as a function of β -Ni(OH)₂ nanosheets with ssDNA (inset is dsDNA) in the presence of varying concentrations of MgCl₂. The concentrations for β -Ni(OH)₂ nanosheets and DNA (ssDNA: 22-F; dsDNA: 22-F/DNA-141) were 480 µg/mL and 50 nM, respectively. The buffer used in this experiment is 25 mM Tris-HCl (pH=8.0) containing 100 mM KCl.

Fig. S2 Effect of pH on the quenching efficiency between β -Ni(OH)₂ nanosheets and ssDNA.. Each sample was prepared in 25 mM buffer containing 100 mM KCl, 1 mM MgCl₂, 84 µg/mL β -Ni(OH)₂ nanosheets and 600 nM 22-F ssDNA.

Fig. S3 Effect of pH on the degradation of β -Ni(OH)₂ nanosheets. Each sample contains 2.4 mg/mL β -Ni(OH)₂ nanosheets.

Fig. S4 (A) Photos of β-Ni(OH)₂ nanosheets (1) treated by adding 20 mM EDTA (2), heating at 95 °C (3) or both EDTA and heat (4). **(B)** Non-denatured PAGE analysis of the supernatant of different samples. Lane 1: 22-C; Lane 2: 22-C + DNA-141; Lane 3: 22-C + β-Ni(OH)₂ nanosheets +EDTA; Lane 4: 22-C + β-Ni(OH)₂ nanosheets + 95 °C heat treatment; Lane 5: 22-C + β-Ni(OH)₂ nanosheets +EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment; Lane 6: 22-C + β-Ni(OH)₂ nanosheets + EDTA + 95 °C heat treatment + DNA-141. Each sample contained a final buffer concentration of 25 mM, 100 mM KCl, 1 mM MgCl₂, 0.96 mg/mL β-Ni(OH)₂ nanosheets, 20 mM EDTA, and 2 μM DNA.

Fig. S5 Effect of pH on the desorption efficiency of DNA on β -Ni(OH)₂ nanosheets. Each sample (25 μ L) contained a final buffer concentration of 25 mM, 100 mM KCl, 1 mM MgCl₂, 0.96 mg/mL β -Ni(OH)₂ nanosheets, 20 mM EDTA, and 2 μ M DNA.

Fig. S6 Fluorescence response of MB for different samples. MB was used as a signal probe to recognize DNA-141. The fluorescence signal is low when there is no DNA-141 in the sample 1. The fluorescence signal is dramatically increased as the addition of DNA-141 in the sample 2 (1200 nM, 20 μ L). We diluted sample 2 with buffer for 50-fold (sample 3: 24 nM, 20 μ L), and then added β -Ni(OH)₂ nanomaterial to adsorb and enrich DNA-141 (sample 3': 24 nM, 1000 μ L). After centrifugation and degradation, the adsorbed and enriched DNA-141 was desorbed and collected in sample 4 (20 μ L). The sample 4 was also analyzed by MB. The signal induced by sample 4 with desorbed DNA-141 was approach with the sample before diluted sample 2.

Fig. S7 The performance of the assay was evaluated by the (F-F₀)/ F₀ at different temperatures, where F₀ and F are the fluorescence signals in the absence and the presence of miRNA-141, respectively. The concentrations of 22-F, miRNA and β -Ni(OH)₂ nanosheets were 300 nM, 10 nM ,10 nM and 6 μ L (480 μ g/mL), respectively. Error bars are standard deviation of three repetitive experiments.

Fig. S8 Melting curve of MB/miRNA-141 duplex. The Tm of MB/miRNA-141 is about 68 °C which is higher than the working temperature of DSN (60 °C). The underlined sequence of MB(5'-FAM-CCTCCACCCATCTTTACCAGACAGTGTTAGTGGAGG-BHQ1-3') is designed to recognize miRNA-141 and form MB/miRNA-141 duplex. The experiment was performed on a Mx 3005P real-time PCR equipment (Stratagene, USA).

Fig. S9 Non-denatured PAGE analysis of P-141 and miRNAs in the absence (**A**) and presence (**B**) of DSN. Lane 1: P-141+ miRNA-141; Lane 2: P-141+ SmiRNA-141; Lane 3: P-141+ miRNA-429; Lane 4: P-141+ miRNA-21. The concentrations of P-141, miRNA and DSN were 2000 nM, 2000 nM and 0.4 U, respectively.

Cell Sample	miRNA-141	U6	ΔCt	ΔΔCt	$2^{(-\Delta\Delta Ct)}$
22Rv1	18.41899	8.033598	10.3854	0	1
293T	26.92119	7.931848	18.98934	8.603945	0.00257
MDA-MB231	18.07741	8.019919	10.05749	-0.32791	1.255191
HeLa	27.18598	7.833008	19.35297	8.967577	0.001998

Table S2. Average Ct values in qRT-PCR assay of miRNA-141^a.

^a Detection of miRNA-141 expression levels in total RNA isolated from four kinds of human cell lines using qRT-PCR method. For each sample, we added the same dosage of total RNAs. U6 was used as reference gene. The values of $2^{-(\Delta\Delta Ct)}$ were relative with the expression levels. Relative expression levels were based on the expression ratio of miRNA-141 in target cell lines versus that in 22Rv1 cell lines. From the the values of $2^{-(\Delta\Delta Ct)}$, the expression level of miRNA-141 in 22Rv1 and MDA-MB231 cell line were estimated to be more than 400-fold of that in 293T and HeLa cell line, indicating the up-regulation of miRNA-141 in 22Rv1 and MDA-MB231 cell lines as compared with 293T and HeLa cell lines.