Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Multifunctional CaSc₂O₄:Yb³⁺/Er³⁺ one-dimensional nanofibers: Electrospinning

synthesis and concentration-modulated upconversion luminescent properties

Meihong Liu¹, Ming Gu¹, Yue Tian^{1,2*}, Ping Huang¹, Lei Wang¹, Qiufeng Shi¹, Cai'e Cui^{1,*}

¹ Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, College of Physics

and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, PR China

² Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

* Correspondence and requests for materials should be addressed to Y.T. (email: tianyue@tyut.edu.cn,

yuetian@lbl.gov).

Preparation of bulk CaSc₂O₄:Yb³⁺,Er³⁺ phosphor

Bulk $CaSc_2O_4$:5mol%Yb³⁺,3mol%Er³⁺ phosphor was prepared via solid state reaction. Typically, raw materials including CaCO₃ (AR), Sc₂O₃ (99.99%), Yb₂O₃ (99.99%) and Er₂O₃ (99.99%) were ground homogeneously by an agate mortar for 1h. Then the mixture was calcined at 1500 °C for 4h. After cooling to room temperature naturally, the product was reground for the further study.

Preparation of hexagonal NaYF₄:Yb³⁺,Er³⁺ nanoparticles

Hexagonal NaYF₄:20mol%Yb³⁺,2mol%Er³⁺ nanoparticles were prepared reported in the literature. Typically, the solution of oleic acid (6 mL) and octadecene (15 mL) containing YCl₃, YbCl₃ and ErCl₃ was heated at 110 °C under vacuum for 1h. After being cooled down to room temperature, 10 ml of methanol solution containing NaOH (0.1 g) and NH₄F (0.148 g) was slowly added into the solution with magnetic stirring. Keeping stirring continuously, the solution was heated at 70 °C for 30 min to remove methanol, and then heated at 320 °C for 1 h under nitrogen. After the solution was cooled down naturally, the product was collected via centrifugation and washed with ethanol and washed with cyclohexane for three times. Finally, NaYF₄:Yb³⁺,Er³⁺ nanoparticles were dried at 80 °C for 10 h.

Fig. S1. Picture of the self-made temperature controller.

Fig. S2. Upconversion emission spectra of the CaSc₂O₄ nanofibers, NaYF₄ nanoparticles and bulk

CaSc₂O₄ phosphor upon excitation of 980 nm at 560 mW/cm².

Fig. S3. Sensitivity as a function of temperature for the CaSc₂O₄ nanofibers and bulk CaSc₂O₄

phosphor.

Reference

1. J. Li, J. H. Zhang, Z. D. Hao, X. Zhang, J. H. Zhao and Y. S. Luo, J. Appl. Phys., 2013, 113,

223507.

2. W. Yu, W. Xu, H. W. Song and S. Zhang, *Dalton Trans.*, 2014, **43**, 6139-6147.