Electronic Supplementary Information (ESI)

Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics

Jinpyo Lee^a, Yanan Liu^a, Yang Liu^a*, Soo-Jin Park^b, Mira Park^c and Hak Yong Kim^a* ^aDepartment of BIN Convergence Technology, Chonbuk National University, Jeonju, 561-756, South Korea ^bDepartment of Chemistry, Inha University, Incheon 402-751, South Korea ^cDepartment of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756, South Korea

* Corresponding author: Y. Liu, H. Y. Kim
Tel: +82-63-270-2351, Fax: +82-63-270-4249.
E-mail address: khy@jbnu.ac.kr (H. Y. Kim); liu@jbnu.ac.kr (Y. Liu)

Scheme S1 The schematic preparation diagram of carbon fiber nonwoven fabric.

The overall anodic partial reaction for copper electroless plating process proceeds in at least two elementary steps:

A. Formation of electroactive species

B. Charge transfer from electroactive species to the catalytic surface

Specifically,

A: Formation of electroactive species, [HC(OH)O⁻]_{ads}, proceeds in three steps:

- a) Hydrolysis of H₂CO $H_2CO + H_2O \rightarrow H_2C(OH)_2$ (methylene glycol) (1)
- b) Dissociation of $H_2C(OH)_2$,

$$H_2C(OH)_2 + OH^- \to H_2C(OH)O^- + H_2O$$
 (2)

c) Dissociative adsorption of the intermediate $H_2C(OH)O^2$,

$$H_2 \mathcal{C}(OH) O^- \to \left[H \mathcal{C}(OH) O^- \right]_{ads} + H_{ads} \tag{3}$$

where the subscript *ads* denotes adsorption of species. The adsorption of intermediate involves breaking of C–H bond.

B: Charge transfer, the electroactive species oxides according to the reaction

$$\left[HC(0H)O^{-}\right]_{ads} + OH^{-} \rightarrow HCOO^{-} + H_{2}O + e \tag{4}$$

The adsorbed hydrogen, H_{ads}, could be desorbed in the chemical reaction

$$H_{ads} \rightarrow \frac{1}{2} H_2 \tag{5}$$

Fig. S1 The cross-section FE-SEM images of Cu@ACFs-3, Cu@ACFs-5 and Cu@ACFs-10, which showed the thickness of Cu coatings on ACFs (296 nm, 508 nm and 595 nm, respectively).

Fig. S2 The morphology images of Cu@ACFs-5 that were observed from optical microscope.

Samples	Density	t (cm)	SE	SSE	SSE/t	Ref.
	(g/cm ³)		(dB)	(dB cm ³ g ⁻¹)	(dB cm ² g ⁻¹)	
30% rGO + PS	0.45	0.25	29	64.4	257.6	S1
10% rGO/Fe ₃ O ₄ + PEI	0.4	0.25	18	44	176	S2
7% SWCNT + PS	0.56	0.12	18.5	33	275	S3
0.8 wt% Gr + PDMS	0.06	0.16	20	500	3125	S4
5 wt% Gr + PMMA	0.79	0.4	19	25	62.5	S5
Bulk carbon foam	0.166	0.2	40	241	1250	S6
CuNi-CNT	0.23	0.15	54.6	237	1580	S7
Dense Cu foil	6.944	0.0032	46.3	6.67	2084.38	
Pure ACFs	0.092	0.03485	11.3	122.8	3523.67	
Cu@ACFs-1	0.125	0.03882	16.2	129.6	3338.49	This
Cu@ACFs-3	0.131	0.04028	58.2	444.3	10491.15	work
Cu@ACFs-5	0.150	0.04235	69.8	465.3	10987.01	
Cu@ACFs-10	0.169	0.0432	81.5	482.2	11162.04	

Table S1 Specific EMI shielding performances optimized with the thickness of foam structurebased shielding materials and pure copper foil.

The Specific shielding effectiveness (SSE) and Absolute effectiveness (SSE_t) were calculated by the following equation[S8-10]:

 $SSE = EMI SE/density = dB cm^3 g^{-1}$

 $\label{eq:SSE} SSE_t = SSE/thickness = dB\ cm^3\ g^{\text{-}1}\ cm^{\text{-}1} = dB\ cm^2\ g^{\text{-}1}$

Shielding Effectiveness (dB)	Shielding Efficiency (%)
0	0
10	90
20	99
30	99.9
40	99.99
50	99.999
60	99.9999
70	99.99999
80	99.999999
90	99.9999999

Table S2 Relationship between shielding effectiveness (dB) and shielding efficiency (%).

The EMI shielding efficiency (%) was calculated by the following equation[S8, S9]: Shielding efficiency (%) = $100 - (10^{\frac{SE}{10}})^{-1} \times 100$

Table S3 Electrochemical corrosion parameters obtained from polarization curves and r_{corr} tested in a 3.5% NaCl solution.

Samples	E _{corr} (V vs. Ag/AgCl)	E _{pit} (V vs. Ag/AgCl)	ΔE _p	i _{corr} (A/cm ²)
Cu@ACFs-3	-1.04 ± 0.02	6.5×10-4	1.041	$(5.75 \pm 0.46) \times 10^{-4}$
Cu@ACFs-5	-1.0 ± 0.01	0.178	1.178	$(5.13 \pm 0.12) \times 10^{-4}$
Cu@ACFs-10	-1.02 ± 0.02	0.03	1.05	$(6.96 \pm 0.33) \times 10^{-4}$

Fig. S3 FE-SEM images of Cu@ACFs-5 after electrochemical corrosion test.

Fig. S4 FE-SEM images and I-V curves of Cu@ACFs-5 sample after salt mist test.

References

- S1. D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang and Z.-M. Li, *Journal of Materials Chemistry*, 2012, 22, 18772-18774.
- S2. B. Shen, W. Zhai, M. Tao, J. Ling and W. Zheng, *ACS Applied Materials & Interfaces*, 2013, 5, 11383-11391.
- S3. Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence, *Nano Letters*, 2005, 5, 2131-2134.
- S4. Z. Chen, C. Xu, C. Ma, W. Ren and H.-M. Cheng, Advanced Materials, 2013, 25, 1296-1300.
- H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He and Z.-Z. Yu, ACS Applied Materials & Interfaces, 2011, 3, 918-924.
- F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti and V. Mariani Primiani, *Carbon*, 2012, 50, 1972-1980.
- S7. K. Ji, H. Zhao, J. Zhang, J. Chen and Z. Dai, *Applied Surface Science*, 2014, **311**, 351-356.
- S8. F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo and Y. Gogotsi, *Science*, 2016, 353, 1137-1140.
- S9. A. Ameli, M. Nofar, S. Wang and C. B. Park, ACS Applied Materials & Interfaces, 2014, 6, 11091-11100.
- S10. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou and Z. Zhang, *Advanced Functional Materials*, 2016, 26, 303-310.