Electronic Supplementary Information

Dual-binding pyridine and rhodamine B conjugate derivatives as fluorescent chemosensors for Ferric ion in aqueous media and living cells

Fan Song,^a Chao Yang,^b Haibo Liu,^c Zhigang Gao,^c Jing Zhu,^{*b} Xiaofeng Bao^{*c} and Chun Kan^{*a}

^a College of Science, Nanjing Forestry University, Nanjing 210037, China.

^b Department of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.

^c School of Environmental and Biological Engineering, Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, China.

Contents

1. Materials and General Methods	S-2
2. Synthesis	
3. NMR and MS spectra	S-3
4. Experiment graphs and Tables	S-7

1. Materials and General Methods.

All reagents and organic solvents were of ACS grade or higher and were used without further purification. Unless otherwise noted, all chemicals were purchased from J&K Scientific (Shanghai, China) and were used as received. All solvents were of analytical grade, and double-distilled water was used in all of the experiments. The salts used in the stock solutions of metal ions were $CdCl_2 \cdot 2.5H_2O$, $CuCl_2 \cdot 2H_2O$, $AlCl_3$, KNO_3 , $FeCl_3 \cdot 6H_2O$, $HgCl_2$, $NiCl_2 \cdot 6H_2O$, $MgCl_2 \cdot 6H_2O$, $NaCl, ZnCl_2$, $CrCl_3 \cdot 6H_2O$, $Ba(NO_3)_2$, $MnCl_2 \cdot 4H_2O$, $CoCl_2 \cdot 6H_2O$, $CaCl_2$ and $PbCl_2$. The reactions were performed under an argon atmosphere using standard Schlenk techniques. Thin-layer chromatography was performed on a HAIYANG silica gel F254 plate and compounds were visualized under UV light (λ =254nm). Column chromatography was performed using HAIYANG silicagel (type: 200–300 mesh ZCX-2).

¹H (500 MHz) and¹³C NMR (126 MHz) spectra were recorded on an Avance 500 spectrometer (Bruker; Billerica, MA, USA). The chemical shifts are reported in δ units (ppm) downfield relative to the chemical shift of tetramethyl silane. The abbreviations br, s, d, t, and m denote broad,singlet, doublet, triplet, and multiplet, respectively. Mass spectra were obtained with a Finnigan TSQ Quantum LC/MS spectrometer. High-resolution mass spectra (HRMS) were acquired under electron ionization conditions with a doublefocusing high-resolution instrument (Autospec; Micromass Inc.). The pH levels of stock solutions were measured using a PHS-25C Precision pH/mV meter (Aolilong, Hangzhou, China). UV–vis and fluorescence spectra were obtained on a UV-3600 UV-vis-NIR spectrophotometer (Shimadzu, Japan) and an Edinburgh FLS920 fluorescence spectrophotometer (Livingston, UK), respectively, at room temperature. Cell imaging was performed with an inverted fluorescence microscope (OLYMPUS, IX83).

2. Synthesis.

Synthesis of Compound 1

Ethylenediamine (1.3mL, 20mmol.) was added to a solution of rhodamine B (960mg, 2mmol) in ethanol (20 mL). The mixture was refluxed for 12h and then evaporated to dryness under a vacuum. The residue was dissolved in CH₂Cl₂ and then washed with H₂O and brine. The organic layer was dried with MgSO₄. After removal of the solvent, flash chromatography (silica gel; MeOH/CH₂Cl₂= 3/97, v/v) of the residue yielded 1 as a pink solid (880mg, 92%). ¹H NMR(CDCl₃), δ 7.90 (dd, J=5.6, 3.0Hz, 1H), 7.61-7.38(m, 2H), 7.09 (dd, J=5.6, 2.9Hz, 1H), 6.43 (d, J=8.8Hz, 2H), 6.37(d, J=2.5Hz,2H), 6.27 (dd, J=8.9, 2.6Hz, 2H), 3.38-3.27 (m, 8H), 3.19 (t, J₁=6.65Hz, J₂=6.6Hz, 2H), 2.41 (t, J₁=6.65Hz, J₂=6.6Hz, 2H), 1.16 (t, J₁=7.0Hz, J₂=7.1Hz, 12H) ppm. ¹³C NMR (CDCl₃), δ 168.59, 153.35, 148.79, 132.38, 131.20, 128.64, 128.02, 123.80, 122.71,108.13, 105.65, 97, 64.91, 44.36, 44.06, 40.73, 12.56 ppm. ESI-MS (M+H)⁺ found, 485.29; calculated for C₃₀H₃₇N₄O₂, 484.64.

Synthesis of RBPO

2-Picolinic acid (90mg, 0.73mmol), N,N'-Dicyclohexylcarbodiimide (DCC, 430mg, 2.09mmol), 1-Hydroxybenzotriazole (HOBt, 280mg, 2.07mmol), N,N-Diisopropylethylamine (DIPEA, 280μL, 2.17mmol) was dissolved in 30mL of dry CH₂Cl₂. The mixture was stirred at room temperature for 1h. To a solution of 1 (330mg, 0.68mmol) was added to the mixture above. The mixture was stirred at room temperature for 2h, and the solvent was removed in a vacuum. The residue was dissolved in CH_2Cl_2 and then washed with H_2O . The organic phase was dried with Magnesium sulfate and then concentrated. The residue was purified by column chromatography using petroleum ether/ethyl acetate (4:6, v/v) as an eluent to give **RBPO** as an orange solid (235mg, 61%). ¹H NMR (CDCl₃), $\delta 8.66$ (s, 1H), 8.60(d, J=4.1Hz, 1H), 8.10 (d, J=7.8Hz, 1H), 7.94 (s, 1H), 7.78 (t, J=7.7Hz, 1H), 7.43 (s, 2H), 7.37 (t, J=6.0Hz, 1H), 7.07 (s, 1H), 6.47 (d, J=8.6Hz, 2H), 6.38 (s, 2H), 6.24 (d, J=8.1Hz, 2H), 3.49 (s, 2H), 3.42 (d, J=5.4Hz, 2H), 3.32 (dd, J=6.5, 5.4Hz, 8H), 1.16 (t, J=6.7Hz, 12H) ppm. ¹³C NMR (CDCl₃), $\delta 171.13$, 169.22, 164.45, 153.58, 150.17, 148.56, 136.98, 132.55, 130.66, 128.28, 125.77, 122.93, 108.19, 105.10, 97.81, 77.10, 65.27, 60.38, 53.46, 48.88, 44.33, 39.60, 33.96, 25.33, 21.04, 12.60 ppm. ESI-MS (M+H)⁺ found, 590.31; calculated for $C_{36}H_{39}N_5O_3$, 589.74.

Synthesis of RBPF

To a solution of 1 (212mg, 0.44mmol) in 10mL of dry CH₂Cl₂ was added pyridine-2,6-dicarbonyl dichloride (37mg, 0.18mmol) and triethylamine (46 μ L, 0.32mmol). The mixture was stirred at room temperature for 3h, and the solvent was removed in a vacuum. The residue was dissolved in CH₂Cl₂ and then washed with H₂O. The organic phase was dried with Magnesium sulfate and then concentrated. The residue was purified by column chromatography using 0.3% MeOH/CH₂Cl₂ as an eluent to give **RBPF** as an orange solid (136mg, 55%). ¹H NMR (CDCl₃), δ 8.19 (d, J=7.8Hz, 2H), 8.02(d, J=7.5Hz, 2H), 7.89 (t, J₁=7.7Hz, J₂=7.8Hz, 1H), 7.41-7.52 (m, 4H), 7.07 (d, J=7.5Hz, 2H), 6.51 (d, J=8.9, 4H), 6.38 (s, 4H), 6.23 (dd, J=8.9, 3.6Hz, 4H), 3.58 (d, J=6.0Hz, 4H), 3.40 (d, J=5.4Hz, 4H), 3.25-3.32 (m, 16H), 1.14 (s, 24H) ppm. ¹³C NMR (CDCl₃), δ 168.67, 163.01, 152.71, 147.65, 137.26, 131.59, 129.30, 122.67, 107.25, 104.27, 97, 64.67, 52.49, 43.35, 39.10, 30.95, 28.72, 21.72, 11.68 ppm. ESI-MS (M+H)⁺ found, 1100.57; calculated for C₆₇H₇₃N₉O₆, 1100.38.

3. NMR and MS spectra.

Fig. S-2 ¹³C NMR (CDCl₃,125 MHz) spectra of compound 1.

Fig. S-3 ¹H NMR (CDCl₃, 500 MHz) spectra of compound RBPO.

Fig. S-4 ¹³C NMR (CDCl₃, 125 MHz) spectra of compound RBPO.

Fig. S-6 ¹³C NMR (CDCl₃, 125 MHz) spectra of compound RBPF.

Fig. S-7 ESI-MS spectrum of compound RBPO.

4. Experiment graphs and Tables.

Fig. S-9 Effect of pH on the fluorescence of RBPO (20 μ M) and RBPF (20 μ M) in EtOH/H₂O solutions (3:1, v/v) in the absence and presence of Fe³⁺ (100 μ M). The excitation and emission wavelengths were 560 nm and 582 nm, respectively.

Fig. S-10 (a, c) Benesi-Hildebrand plot ($\lambda_{em} = 582 \text{ nm}$) of 1/(F-F₀) vs 1/[Fe³⁺]. Fluorescent intensity at 582 nm of (b) RBPO (20µM) and (d) RBPF (20µM) 8989, HEPES, 0.5Mm, pH=7.33) with different amounts of Fe³⁺. The excitation wavelength is 560 nm.

Fig. S-11 Cytotoxicity assay of chemosensors RBPO and RBPF for human breast adenocarcinoma (MCF-7) cells by the MTT test. Human breast adenocarcinoma (MCF-7) cells were respectively cultured in the presence of different concentrations of RBPO and RBPF (1.25, 2.5, 5, 10, and 20 μ M) at 37 °C for 24h. For the control group, human breast adenocarcinoma (MCF-7) cells were incubated under the same conditions but without chemosensors RBPO or RBPF.

Fig. S-12 Bright field of cells treated with no RBPO (a), RBPF (d) or Fe^{3+} . Cells incubated with (b) RBPO (10µM) and (e) RBPF (10µM) in the bright field. Cells pretreated with (c) RBPO (10µM) and (f) RBPF (10µM) incubated with Fe^{3+} (100µM) for 2h in the bright field.

Calculation of association constant

The association constant (K_a) of **RBPO**-Fe³⁺ and **RBPF**-Fe³⁺ complexs were determined by Benesi-Hildebrand Formula(1):

$$\Delta F = F - F_0 = \Delta F = \Delta F = [Fe^{3+}](F_{max} - F_0)/(1/K_a + [Fe^{3+}])$$
(1)

Where F is the fluorescence intensity at 582 nm upon addition of different concentration of Fe³⁺, F₀ is the fluorescence intensity at 582 nm in the absence of Fe³⁺ and F_{max} is the saturated intensity at 582 nm in the presence of Fe³⁺. The association constant (Ka) was evaluated graphically by plotting $1/[F-F_0]$ against $1/[Fe^{3+}]$. Linear fit to the data according to the formula (1), through the slope and intercept, the

binding constant of **RBPO** was calculated as 2.70×10^4 M⁻¹ and the binding constant of **RBPF** was calculated as 1.97×10^4 M⁻¹.

Determination of detection limit

According fluorescence titration experiments, we can also calculate the detection limit of **RBPO** and **RBPF** for Fe^{3+} . The fluorescence intensity of the blank samples was measured for 10 times, calculate the standard deviation of the fluorescence intensity at 582nm. Then, make a curve based on the fluorescence intensity of **RBPO/RBPF** at 582 nm and the concentration of Fe^{3+} to obtain the slope. The detection limit was calculated according to the following formula:

Detection limit =
$$\frac{3SD}{S}$$
 (2)

Where SD is the standard deviation of the blank solution detected for 10 times; S is the slope of the calibration curve. Finally, the detection limit of **RBPO** is calculated to be 0.067μ M and the detection limit of **RBPF** is calculated to be 0.345μ M.

[Fe ³⁺] (M)	1/[Fe ³⁺]	F	F-F ₀	1/(F-F ₀)
0		2372 (F ₀)		
0.8E-06	1.25E+05	79828	77456	0.00001291
1.20E-05	8.33E+04	105724	103352	0.00000968
1.60E-05	6.25E+04	128513	126141	0.00000793
2.00E-05	5.00E+04	144932	142560	0.00000701
2.60E-05	3.85E+04	179505	177133	0.00000565
3.20E-05	3.13E+04	209391	207019	0.00000483
4.00E-05	2.50E+04	236465	234093	0.00000427

Tab. S-1 Detailed Calculations for Ka of RBPO-Fe³⁺.

Tab. S-2 Detailed Calculations for Ka of RBPF-Fe³⁺.

[Fe ³⁺] (M)	1/[Fe ³⁺]	F	F-F ₀	1/(F-F ₀)
0		998 (F ₀)		
0.8E-06	1.25E+05	1552	554	0.00180
1.20E-05	8.33E+04	2033	1035	0.00097
1.60E-05	6.25E+04	2609	1611	0.00062
2.00E-05	5.00E+04	3086	2088	0.00048
2.60E-05	3.85E+04	4223	3225	0.00031
3.20E-05	3.13E+04	5854	4856	0.00021
4.00E-05	2.50E+04	7158	6160	0.00016

Tab. S-3 Calculations of SD (RBPO). S-10

F.I. of the blanl	< solution	X _i -X (i=1,2,3,4,5,6,7 ,8,9,10)	(X _i - X ²		SD
X ₁	2372	19	Y ₁	361	
X2	2356	3	Y ₂	9	
X ₃	2361	8	Y ₃	64	
X ₄	2338	-15	Y ₄	225	
X5	2363	10	Y5	100	
X ₆	2345	-8	Y ₆	64	
X ₇	2339	-14	Y ₇	196	
X ₈	2350	-3	Y ₈	9	
X ₉	2359	6	Y ₉	36	
X ₁₀	2347	-6	Y ₁₀	36	
average value $\overline{\mathbf{X}}$	2353		$SD^{2} = (Y_{1} + Y_{2} + Y_{3} + Y_{4} + Y_{5} + Y_{6} + Y_{7} + Y_{8} + Y_{9} + Y_{10})/9$	122.2	11.05

Tab. S-4Calculations of SD (RBPF).

F.I. of the blanl	k solution	X _i -X (i=1,2,3,4,5,6,7 ,8,9,10)	$(\mathbf{X}_{i} - \overline{\mathbf{X}})^{2}$		SD
X ₁	998	3.1	Y ₁	9.61	
X ₂	995	0.1	Y ₂	0.01	
X ₃	993	-1.9	Y ₃	3.61	
X ₄	996	1.1	Y ₄	1.21	
X5	991	-3.9	Y ₅	15.21	
X ₆	995	0.1	Y ₆	0.01	
X ₇	997	2.1	Y ₇	4.41	
X ₈	995	0.1	Y ₈	0.01	
X9	993	-1.9	Y9	3.61	
X ₁₀	996	1.1	Y ₁₀	1.21	
average value $\overline{\mathbf{X}}$	994.9		$SD^{2} = (Y_{1} + Y_{2} + Y_{3} + Y_{4} + Y_{5} + Y_{6} + Y_{7} + Y_{8} + Y_{9} + Y_{10})/9$	4.32	2.08

$$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X})^2}$$

Sample	Amount of spiked Fe^{3+} (μM)	Fe ³⁺ found (µM)	Recovery (%)
1+ RBPO	33	30.41	92.15
2+ RBPO	67	61.52	91.82
3+ RBPO	100	91.82	91.82
4+ RBPO	133	123.24	92.66
5+ RBPO	167	152.81	91.50
6+ RBPO	200	188.33	94.16
1+ RBPF	33	30.06	91.09
2+ RBPF	67	62.47	93.24
3+ RBPF	100	91.28	91.28
4+ RBPF	133	120.11	90.31
5+ RBPF	167	151.59	90.77
6+ RBPF	200	189.13	94.57

Tab. S-5 Determination of the recovered Fe^{3+} concentration in tap water samples by fluorescent method using RBPO (20 μ M) and RBPF (20 μ M).