Electrolic supplementary information

Carboxyphenyl-terpyridine-based a series of gels for procedural visual recognition of multi-

anions

Dan Yuan^[a] and Yuan Fang Li*^[a]

Figure S1 Photographs of Hcptpy in presence of different concentration of $Cr_2O_7^{2-}$ and $H_2PO_4^{-}$ respectively. (a) $Cr_2O_7^{2-}$ (b) $H_2PO_4^{-}$. Numbers on the cap indicates the concentration of anions.

Figure S2 The solution-gel transformation of (a) $H_2PO_4^-$ - Hcptpy system (b) $Cr_2O_7^{2-}$ - Hcptpy system by alternating addition of acid and alkali. (c) The "solution-gel" cycles of $H_2PO_4^-$ - Hcptpy and $Cr_2O_7^{2-}$ - Hcptpy system, controlled by the alternative addition of H⁺ and OH⁻.

Figure S3 Photograph of the gel formation with addition of H⁺ to the Hcptpy solution.

Mg-MOG					Ba-MOG									
MAL	H ₂ O	DMSO	DMF	CHCl ₃	CH ₃ OH	C ₂ H ₅ OH	ML	H ₂ O	DMSO	DMF	CHCl ₃	CH ₃ OH	C ₂ H ₅ OH	
H ₂ O	6	G	NG	NG	NG	NG	H ₂ O	G	G	G	G	G	G	
DMSO	G	NG	NG	NG	NG	NG	DMSO	G	NG	NG	NG	NG	NG	
DMF	NG	NG	NG	NG	NG	NG	DMF	G	NG	NG	NG	NG	NG	
CHCl ₃	NG	NG	NG	NG	NG	NG	CHCl ₃	G	NG	NG	NG	NG	NG	
CH ₃ OH	NG	NG	NG	NG	NG	NG	CH ₃ OH	G	NG	NG	NG	NG	NG	
C ₂ H ₅ OH	NG	NG	NG	NG	NG	NG	C ₂ H ₅ OH	G	NG	NG	NG	NG	NG	
Cr-MOG						Cu-MOG								
M	H ₂ O	DMSO	DMF	CHCl ₃	CH ₃ OH	C_2H_5OH	(And I	H ₂ O	7 DMSO	DMF	CHCl ₃	CH ₃ OH	C ₂ H ₅ OH	
H ₂ O	<u>~</u> €.∕	NG	NG	NG	NG	NG	H ₂ O	<u>_</u> e\	G	G	NG	G	G	
DMSO	NG	NG	NG	NG	NG	NG	DMSO	G	NG	NG	NG	NG	NG	
DMF	NG	NG	NG	NG	NG	NG	DMF	G	NG	NG	NG	NG	NG	
CHCl ₃	NG	NG	NG	NG	NG	NG	CHCl ₃	NG	NG	NG	NG	NG	NG	
CH₃OH	NG	NG	NG	NG	NG	NG	CH ₃ OH	G	NG	NG	NG	NG	NG	
C ₂ H ₅ OH	NG	NG	NG	NG	NG	NG	C ₂ H ₅ OH	G	NG	NG	NG	NG	NG	
Hg-MOG							Cd-MOG							
M	H ₂ O	DMSO	DMF	CHCl ₃	CH₃OH	C ₂ H ₅ OH	MAL .	H ₂ O	DMSO	DMF	CHCl ₃	CH ₃ OH	C ₂ H ₅ OH	
H ₂ O	6./	NG	NG	NG	NG	NG	H ₂ O	6/	NG	NG	NG	NG	NG	
DMSO	NG	NG	NG	NG	NG	NG	DMSO	NG	NG	NG	NG	NG	NG	
DMF	NG	NG	NG	NG	NG	NG	DMF	NG	NG	NG	NG	NG	NG	
CHCl ₃	NG	NG	NG	NG	NG	NG	CHCl ₃	NG	NG	NG	NG	NG	NG	
CH ₃ OH	NG	NG	NG	NG	NG	NG	CH ₃ OH	NG	NG	NG	NG	NG	NG	
C ₂ H ₅ OH	NG	NG	NG	NG	NG	NG	C ₂ H ₅ OH	NG	NG	NG	NG	NG	NG	
Sm-MOG							Eu-MOG							
M	H ₂ O	DMSO	DMF	CHCl ₃	CH ₃ OH	C_2H_5OH	MAL.	H ₂ O	DMSO	DMF	CHCl ₃	CH ₃ OH	C ₂ H ₅ OH	
H ₂ O	6./	NG	NG	NG	G	G	H ₂ O	_e∖	NG	NG	NG	G	G	
DMSO	NG	NG	NG	NG	NG	NG	DMSO	NG	NG	NG	NG	NG	NG	
DMF	NG	NG	NG	NG	NG	NG	DMF	NG	NG	NG	NG	NG	NG	
CHCl ₃	NG	NG	NG	NG	NG	NG	CHCl ₃	NG	NG	NG	NG	NG	NG	
CH ₃ OH	G	NG	NG	NG	NG	NG	CH ₃ OH	G	NG	NG	NG	NG	NG	
C ₂ H ₅ OH	G	NG	NG	NG	NG	NG	C ₂ H ₅ OH	G	NG	NG	NG	NG	NG	
Dy-MOG							_							
MAL	H ₂ O	> DMSO	DMF	CHCl ₃	CH ₃ OH	C ₂ H ₅ OH								
H ₂ O	G	NG	NG	NG	G	G								
DMSO	NG	NG	NG	NG	NG	NG								
DMF	NG	NG	NG	NG	NG	NG								
CHCl ₃	NG	NG	NG	NG	NG	NG								

Table S1. The gel formation in different solvents. Note for abbreviations: Gel (G), No Gel (NG). Ligand Hcptpy (L), Metal ions (M).

CH ₃ OH	G	NG	NG	NG	NG	NG
C ₂ H ₅ OH	G	NG	NG	NG	NG	NG

Figure S4 Photographs of MOGs formation in different M/L ratios. (a) Mg-MOG (b) Ba-MOG (c) Cr-MOG (d) Cu-MOG (e) Cd-MOG (f) Sm-MOG (g) Eu-MOG (h) Dy-MOG (i) Hg-MOG. (Numbers on the EP tube indicates the equivalents of metal ion with respect to ligand present in the respective EP tube).

Figure S5 SEM images of MOGs. (a) Mg-MOGs, (b) Ba-MOGs, (c) Cr-MOGs, (d) Cu-MOGs, (e) Hg-MOGs, (f) Cd-MOG, (g) Sm-MOG, (h) Eu-MOG, (i) Dy-MOG.

Figure S6 X-ray diffraction (XRD) pattern of the (a) Cd-MOG and (b) Eu-MOG. TGA curve of the (c) Cd-MOG and (d) Eu-MOG.

Figure S7 (a) The UV-Vis absorption spectra of Al-MOG and I^{\cdot}. (b) Cyclic voltammograms of the Al-MOG. (c) The ELUMO and EHOMO of Al-MOG and I^{\cdot}.

Figure S8 (a) The UV-Vis absorption spectra of Eu-MOG and NO_2^- . (b) Cyclic voltammograms of the Eu-MOG. (c) The E_{LUMO} and E_{HOMO} of Eu-MOG and NO_2^- .

Figure S9 (a) The fluorescence spectrum and (b) the photograph under the 365 nm UV lamp of Eu-MOG with addition of HPO_4^{2-} and H^+ respectively (20 mmol/L).