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S-1. General Information

Reagents were purchased from commercial sources and were used as received unless mentioned
otherwise. Reactions were monitored by thin layer chromatography using silica gel. All the
reactions dealing with air or moisture sensitive compounds were carried out in a dry reaction
vessel under positive pressure of argon. Air- and moisture-sensitive liquids and solutions were
transferred via a syringe or a stainless steel cannula. 'H-NMR was recorded at 400 MHz or 600
MHz: chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent
resonance employed as the internal standard (CDCl; at 7.26 ppm). '*C-NMR was recorded at 100
MHz or 126 MHz: chemical shifts are reported in ppm from tetramethylsilane (TMS) with the
solvent resonance as the internal standard (CDCl; at 77.20 ppm). 3! P-NMR were recorded at 202
MHz or 243 MHz: chemical shifts for phosphorous are reported in parts per million (ppm, d scale)
referenced to the phosphorous resonance of phosphoric acid (6 = 0). The ESI - MS analysis of the
samples was operated on an LCQ advantage mass spectrometer (ThermoFisher Company, USA),
equipped with an ESI ion source in the positive ionization mode, with data acquisition using the
Xcalibur software (Version 1.4). High resolution mass spectral analyses (LRMS and HRMS) were
performed at Chemical Instrument Center, Sha’an Xi Normal University (Bruker Daltonics
micrOTOF-QII). Elemental Analysis was performed at Bruker Vario EL III. FT-IR measurement
was performed at Bruker Tensor 27. Reagents, such as tetrahydrofuran, toluene (with Na and
benzophenone) and MeCN (CaH,), were freshly distilled in prior to use. Aromatic triflates were
synthesized according to litererature reports ['l. L1, L2 and L4 were synthesized by the methods

developed by our groups [21.



S-2. Synthetic Routes for Schiff-Based ligands

o-phenylenediamine (1.5 eq)

cl MeOH, cl Pd(OAc), (5 mol%) MeQ
NA\N NaHCO, NJ§N PPhs (10 mol%), DIPEA (1.5 eq) >=N>_NH "
| I N/ 2
Cl)\N/ ol 0°C,10h Cl)\N/ OMe MeCN, 25°C, 3 h C|>_N
s1 S2 s3
)O\/HEOH
MeO Ethylene glycol (3 eq) PPh )Nl\ =N
. ~
DPPBde (1.1 eq) >—N LiO'Bu (2 eq) @/ 2 HN” N SOoMe
7
N D—NH N=  PPh, _N
DCM: MeOH (v:v=1:10) =N Toluene, 100°C, 3
reflux, overnight Cl
L2 L3

Scheme S1. Synthetic routes of L3

S-2.1 Experimental procedure for synthesis of L3

Proedure for synthesis of L3 : Given that L2 could be synthesized according to the previous report
by our groupl?], the procedure for synthesis of L2 was not described in detail herein. With L2 in
hand, L3 could be obtained via a nucleophilic substitution with ethylene glycol under strong basic
conditions. The procedure for synthesis of L3 was listed as following.

To a dried Schlenk flask, L2 (2 mmol, 1.05 g ) and LiO'Bu (56.2 mg, 4 mmol) were added
under nitrogen atmosphere. Subsequently, dried toluene (3 mL) was added via syringe. The
mixture was stirred at room temperature for 10 min. Then ethylene glycol (334 uL, 6 mmol) in
anhydrous toluene (3 mL) was added at the same temperature. The reaction mixture was heated at
100 °C for about 3 h until L2 was completely consumed. After cooling to room temperature, the
reaction mixture was diluted with 15 mL of ethyl actate and filtered through a plug of celite,
followed by washed with 15 mL of ethyl actate. The combined residue was concentrated under
reduced pressure. The resulting crude product was purified by column chromatography on silica
gel to afford 550 mg of the target product L3 as yellow solid. Yield : 50% . "H NMR (600 MHz,
CDCl3) 8 9.24 (s, 1H), 9.04 (s, 1H), 8.59 (s, 1H), 8.12 (s, 1H), 7.48 (t,J= 7.3 Hz, 1H), 7.36 (t, J =
7.1 Hz, 1H), 7.31 (s, 10H), 7.22 (s, 1H), 7.02 — 6.98 (m, 1H), 6.96 (t, J= 6.9 Hz, 1H), 6.90 (s, 1H),
4.55 (s, 2H), 4.12 (t, J = 10.7 Hz, 2H), 3.94 (d, J = 78.3 Hz, 3H). 13C NMR (151 MHz, CDCl3) §
171.16, 165.89, 158.08, 139.13, 138.79, 138.68, 136.52, 134.21, 134.00, 133.87, 133.42, 131.07,

129.01, 128.94, 128.72, 128.67, 127.60, 123.01, 119.54, 116.74, 65.32, 60.41, 54.96. 3'P NMR
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(243 MHz, CDCl;) 6 -12.24. HR-MS (ESI): m/z: caled.for Cs5,H»NsO3P* 550.1930 [M+H]* and

572.1827 [M+Na]*. Found: 550.1928 and 572.1826.

S-2.2 Experimental procedure for synthesis of L5

Cl MeOH, OMe O-phenylenediamine (1.1 eq)
N NaHCO N—( "BuLi (1.5 eq)
\ a 3 \
c— N >~ MeO—/ N -
N=(  0°C-rt10h N=( THF, -78 °C- r.t, overnight
cl cl
S1 S2

@COOH
(1.4eq) MeO
MeQ Q PPh, —

—N
N, )—NH NH, N, )—NH HN
\ N DCC (1.5 eq), THF >N
MeO reflux, 12 h MeO Ph,P
s3 s

Scheme S4. Synthetic routes of LS
Given that S3 could be synthesized according to the previous work reported by our group 2, the
procedure for synthesis of S3 was not described in detail herein. To a solution of S3 (5 mmol, 1.24
g) in 10 mL of CH,Cl, was added 2-(diphenylphosphino) benzoic acid (7 mmol, 2.14 g) and
dicyclohexylcarbodiimide (DCC, 7 mmol, 1.359 g) at 0 °C. The reaction mixture were stirred at
this temperature for 30 minutes and further stirred at 40 °C for another 4 h. After S3 was
completed consumed, the mixture were filtrate through a plug of celite. The filtrates were dried
over anhydrous Na,SO, and concentrated under reduced pressure. The crude product was purified
by silica gel column chromatography (eluent: petroleum ether: ethyl acetate = 5:1 to 1:1), to give
802.76 mg of the desired product L5 as white solid. Yield: 30%. '"H NMR (600 MHz, CDCl;)
8.42 (s, 1H), 7.85 (s, 1H), 7.64 (s, 1H), 7.54 (d, /= 7.8 Hz, 1H), 7.38 (d, J = 6.4 Hz, 1H), 7.31 (s,
1H), 7.27 (d, J= 7.4 Hz, 1H), 7.25 — 7.17 (m, 10H), 7.11 (t, /= 7.5 Hz, 1H), 7.07 (d, J = 7.3 Hz,
1H), 6.94 (s, 1H), 3.81 (s, 6H). 3C NMR (151 MHz, CDCls) 8 172.49, 167.67, 167.13, 156.93,
140.79, 136.46, 136.40, 134.24, 133.95, 133.82, 130.69, 130.52, 128.98, 128.95, 128.67, 128.62,
128.41, 128.38, 126.16, 126.05, 125.70, 125.13, 54.83. 3'P NMR (243 MHz, CDCls) & -10.68.

HR-MS (ESI): m/z: calcd.for C30H,¢NsO;PNa* 558.1665 [M+Na]*. Found: 558.1663.



S-2.3 Experimental procedure for synthesis of L6

OMe
OMe
o-phenylenediamine (1.5 eq) /©/
OMe Cul (5 mol%) \
1,10-phen (10 mol%
phen ( 0 NH DPPBde (1.1 eq) N H
DABCO (1.5 eq) @[ DCM: MeOH (v:v =1: 10), PPh,
I 1,4-dioxane, 120°C, 24 h NH; reflux, overnight
S5 S6 L6

Scheme S3. Synthetic routes of L6

Procedure for synthesis of L6: p-lodoanisole (5 mmol, 1.17 g ), Cul (0.025 mmol, 5 mol%, 4.78 g),
1,10-phen (0.05 mmol, 10 mol%, 9.42 g ) and DABCO (7.5 mmol, 1.5 eq, 841.28 mg) were
charged into a dried schlenk flask. Then, anhydrous 1,4-dioxane (10 mL) was added into the
schlenk flask by syringe. The mixuture was stirred at room temperature for 0.5 h. Then, a solution
of o-phenylenediamine (7.5 mmol, 1.5 eq, 811.05 mg) in anhydrous 1,4-dioxane (5 mL) was
added into the reaction mixture. The reaction mixture was heated at 100 °C for about 24 h until p-
iodoanisole was completely consumed. After cooling to room temperature, the reaction mixture
was diluted with 15 mL of CH,Cl, and filtered through a plug of celite, followed by washed with
15 mL of CH,Cl, The combined residue was concentrated under reduced pressure, and the
resulting crude product was purified by column chromatography on silica gel to provide the
corresponding amine. The amine was characterized by HR-MS. calcd. for C;3H5N,O" 215.1179
[M+H]". Found: 215.1178.

2-(diphenylphosphino)-benzaldehyde (DPPBde, 1 mmol, 270.2 mg ) was dissolved in 2 mL of
CH,Cl,, which was warmed to 40 °C.. The freshly prepared amine (1 mmol, 214.26 mg) in 20 mL
of MeOH was added to above solution during 0.5 h. The resulting mixture was left standing at the
same temperature for 1 h and then refluxed overnight. After DPPBde was completely consumed,
the mixture was cooled to room temperature and concentrated under reduced pressure. Then the
residue was purified by colunmn chromatography on silica gel to afford 107.1 mg of target
product L6 as white solid. Yield : 22%. '"H NMR (600 MHz, CDCI;) § 9.03 (s, 1H), 8.06 (d, J =
6.7 Hz, 1H), 7.80 (d, J = 3.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 7.0 Hz, 2H), 7.37 —

7.35 (m, 1H), 7.29 (dd, J = 15.4, 9.3 Hz, 10H), 7.13 (d, J = 12.1 Hz, 2H), 6.96 — 6.94 (m, 2H),
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6.87 (d, J=9.0 Hz, 2H), 3.81 (s, 3H), 3.74 (s, 1H). 3C NMR (151 MHz, CDCl;) § 155.66, 139.35,
137.13, 135.38, 134.04, 133.90, 130.46, 128.79, 128.60, 128.55, 124.15, 122.32, 119.76, 119.51,
118.69, 117.96, 117.13, 114.50, 114.37, 112.41, 55.56. 3'P NMR (243 MHz, CDCls) & -16.51.

HR-MS (ESI): m/z: calcd. for C3,H,sN,OP* 487.1934 [M+H]*. Found: 487.1933.

S-2.4 Experimental procedure for synthesis of L7

C|>_ MeOH, OMe o-phenylenediamine (1.1 eq)
—N NaHCO N— "BuLi (1.5 eq)
N, )—C 2 MeO—/ N
>N 0°C-rt, 10h N= -78 °C-- r.t, THF, overnight
Cl Cl
S$1 S2
MeQ —Q
>:N 1-naphthaldehyde (1.1 eq) >:N
N )—NH NH, Ny )—NH N=
>\_N DCM: MeOH (v:v =1: 10), >N O
MeO reflux, overnight —0 Q
S3 L7

Scheme S4. Synthetic routes of L7

Given that S3 was synthesized according to the previous literature by our group!?], the procedure
for synthesis of S3 was not described in detail herein. The procedure for synthesis of L7 was listed
as following.

2-(diphenylphosphino)- benzaldehyde (DPPBde, 1 mmol, 270.2 mg ) was dissolved in 2 mL of
CH,Cl,, which was warmed to 40 °C. S3 (1.2 mmol, 296.8 mg) in 20 mL of MeOH was added to
above solution during 0.5 h. The resulting mixture was left standing at the same temperature for 1
h and then refluxed overnight. After DPPBde was completely consumed, the mixture was cooled
to room temperature. The residue was concentrated under reduced pressure , and then the resulting
crude product was purified by column chromatography on silica gel to afford 127.2 mg of the
target product L7 as red solid. Yield: 32%. 'H NMR (600 MHz, CDCl) & 9.25 (s, 1H), 8.90 (d, J
= 8.5 Hz, 1H), 8.62 (s, 2H), 8.21 (d, /= 7.1 Hz, 1H), 8.00 (d, /= 8.1 Hz, 1H), 7.92 (d, /= 8.2 Hz,
1H), 7.79 — 7.69 (m, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.59 — 7.54 (m, 2H), 7.32 (t, J = 7.5 Hz, 1H),
7.12 (t,J=7.5 Hz, 1H), 3.97 (d, J = 40.0 Hz, 6H). 3C NMR (151 MHz, CDCl3) & 172.43, 167.42,
165.94, 158.67, 139.90, 132.47, 131.62, 131.10, 130.33, 129.83, 128.98, 127.56, 125.40, 123.61,

123.34, 119.86, 116.81, 54.91. HR-MS (ESI): m/z: calcd.for C,HyoNsO," 386.1612 [M+H]".
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Found: 386.1611.

S-2.5 Experimental procedure for synthesis of L8

o-phenylenediamine (4 eq)

_<C| MeOH, _<Cl Pd(OACc); (5 mol%)
NaHCO4 N— PPh3 (10 mol%) DIPEA (3 eq)
C|—</ W ————— o~ N -
—< 0°C,10h N=( MeCN, 65 °C, 10 h
OMe
S1 S2 _

)

o SN §
N)§N DPPBde (2.0 eq)

Q\)l\/)\/@ DCM: MeOH (v:v =2: 8), 2 N
H N H PPh, Ph,P.

NH, NH, reflux, overnight

/

S4

Scheme S2. Synthetic routes of L8

Procedure for synthesis of L8: To a dried Schlenk flask, S2 (2 mmol, 502.1mg ) and o-
phenylenediamine (324 mg, 3 mmol), and Cs,CO; (975.5 mg, 3 mmol) were added at room
temperature. Dried Toluene (5 mL) was subsequent added. The mixture was stirred at 100 °C for
10 h. After cooling to room temperature, the reaction mixture was diluted with 20 ml of CH,Cl,
and filtered through a plug of celite, followed by washed with 20 mL of CH,Cl,. The combined
residue was concentrated under reduced pressure, and then the resulting crude product was
purified by column chromatography (eluent: ethyl acetate : petroleum ether= 1:1) on silica gel to
provide the target product S4 420.7 mg as yellow solid. Yield: 46%.

2-(Diphenylphosphino)-benzaldehyde (DPPBde, 2 mmol, 580.3 mg ) was dissolved in 2 mL of
CH,Cl,, which was warmed to 40 °C. Freshly prepared S4 (1 mmol, 323.4 mg) in 8§ mL of MeOH
was added to the above solution during 0.5 h. The resulting mixture was left standing at the same
temperature for 1 h and then refluxed overnight. After DPPBde was completely consumed, the
mixture was cooled to room temperature. The residue was concentrated under reduced pressure ,
and then the resulting crude product was purified by colunmn chromatography on silica gel to
provide the target product L8 477.2 mg as yellow solid. Yield: 53%. '"H NMR (600 MHz, CDCl;)
69.00 (d, J=4.5 Hz, 2H), 8.08 (dd, J = 7.3, 3.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 3H), 7.34 — 7.28 (m,
26H), 7.00 — 6.97 (m, 2H), 6.94 (dd, J = 7.5, 4.6 Hz, 2H), 6.75 (d, J = 8.9 Hz, 2H), 6.64 (dd, J =

17.2, 7.7 Hz, 4H), 4.01 (s, 4H). 3C NMR (151 MHz, CDCl3) & 156.53, 156.43, 142.41, 139.67,
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139.56, 138.21, 138.07, 137.33, 137.27, 137.23, 134.09, 133.96, 130.45, 129.58, 128.81, 128.75,
128.67, 128.62, 127.72, 118.19, 117.43, 115.26, 60.41. 3'P NMR (243 MHz, CDCl;) 8 -11.71.

HR-MS (ESI): m/z: calcd.for Cs4HasN;OP,* 868.3077 [M+H]*. Found: 868.3071.

S-2.6 Experimental procedure for synthesis of L9

o-phenylenediamine (1.5 eq) _
cl MeOH, Cl Pd(OAc), (5 mol%) 0
N)%N NaHCO; NKN PPh; (10 mol%), DIPEA (1.5 eq) )§
I I
Cl)\N/)\CI 0°C,10h Cl)\N/)\O/ MeCN, 25°C, 3h
S1 S2
LiO'Bu, (2.5 eq) o~
\j)\ Methoxypolyethylene PY
DPPBde (1.1 eq) glycol 2000 (1 eq) N7"N
N7 o) !
)\ n,{/ \/‘J\O)\\NJ\N
DCM MeOH (v:v /1: SN Toluene, 100 °C, 5 h H N

10), reflux, overnlght H N
N Ph,P.
L2 L9
PPh,

Scheme S4. Synthetic routes of L9
To a dried Schlenk flask, L2 (2 mmol, 1.05 g ) and LiO’Bu (56.2 mg, 4 mmol) were added under
nitrogen atmosphere. Dried toluene (6 mL) was subsequent added by syringe. The mixuture was
stirred at room temperature for 10 min. Then methoxypolyethylene-2000 (3.2 g, 1.6 mmol) was
added and then heated at 100 °C for about 3 h. After cooling to room temperature, the reaction
mixture was filtered. The filtrate was then poured into a beaker with 30 mL of cooled n-hexane, a
large amount of precipitate was formed immediately. Then the mixture was filtered and the
precipitate was washed with SmL of cooled ethyl acetate and 5 mL of cooled water twice. Then,
the precipitate was collected , dried over 24 hours under reduced pressure to afford 2.95 g of L9 as

pale-yellow solid. Yield: 75% .



S-3 Optimization of Carbonylative Heck Coupling reaction between

la and 2
CO (5 bar), Pd(OAG), (2 mol%), O
OTf L1 (10 mol%) F
o TC
©/ Base (3 eq), water 95 °C, 10 h
1a 2a 3a
Table S1. Investigation of the influence of bases on the titiled reaction between 1a and 2a
Entry? [Pd] [P] Base Solvent Yield® of
3a(%)

1 Pd(OAc), L1 K,CO; 1,4- 67
dioxane

2 Pd(OAc), L1 KOH 1,4- 10
dioxane

3 Pd(OAc), L1 NaOH 1,4- N.d
dioxane

4 Pd(OAc), L1 K!OBu 1,4- 44
dioxane

5 Pd(OAc), L1 Na!OBu 1,4- 43
dioxane

6 Pd(OAc), L1 DABCO 1,4- 25
dioxane

7 Pd(OAc), L1 DIPEA 1,4- 14
dioxane

8 Pd(OAc), L1 Cs,CO5 1,4- 90
dioxane

9 Pd(OAc), L1 EtsN 1,4- 11
dioxane

10 Pd(OAc), L1 NaH 1,4- 85
dioxane

11 Pd(OAc), L1 LIHMDS 1,4- 17
dioxane

12 Pd(OAc), L1 KHMDS 1,4- 71
dioxane

a. the reaction was performed in 0.2 mmol scale at 95 °C. L1 were all used in 10 mol% , Pd(OAc), 2 mol%, 1a 0.2 mmol, 2a 0.6

mmol, CO 5 bar, bases 0.6 mmol, and water 0.5 mL. b. yields of 3a were determined by 'H-NMR analysis.
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S-3.1 Optimization of different Pd sources in the titled reaction of 1a and 2a
o]
CO (5 bar), [Pd] (2 mol%),
OTf L1 (10 mol%) “
SRR ¢
Cs,CO;5 (3 eq), water, 95 °C, 10 h

1a 2a 3a

Table S2. Optimization of different [Pd] sources in the titiled reaction between 1a and 2a

Entry? [Pd] [P] Base Solvent Yield® of 3a
1 Pd(OAc), L1 Cs,COs H,0 44%
2 [(cinnamyl)PdCI] L1 Cs,CO; H,O 34%
3 [Pd(C32I-|5)CI]2 L1 Cs,CO;3 H,0 33%
4 Pd,(Dba); L1 Cs,CO; H,0 trace
5 PdCl, L1 Cs,CO3 H,0 42%
6 Pd(MeCN),Cl, L1 Cs,CO; H,O trace
7 Pd(acac), L1 Cs,CO; H,O trace
8 Pd(OOCCF;), L1 Cs,CO; H,0 41%
9 Pd(PPhs), L1 Cs,CO3 H,0 N. R

a. the reaction was performed in 0.2 mmol scale at 95 °C. L1 were all used in 10 mol% , Pd(OAc), 2 mol%, 1a 0.2 mmol, 2a 0.6

mmol, CO 5 bar, bases 0.6 mmol, and water 0.5 mL. b. yields of 3a were determined by 'H-NMR analysis.

11



S-3.2 Optimization of different solvents in the titled reaction of 1a and 2a

CO (5 bar), Pd(OAC), 0

©/0Tf ph (2 mol%), L1 10 mol% O Z O
X

Base (3 eq), water, 95°C, 10 h

1a 2a 3a

Table S3. Optimization of different solvents in the titiled reaction between 1a and 2a

Entry? [Pd] [P] Solvent Yield® of 3a
1 Pd(OAc), L1 DMAC 52%
2 Pd(OAc), L1 THF 11%
3 Pd(OAc), L1 Toluene 77%
4 Pd(OAc), L1 o-xylene 81%
5 Pd(OAc), L1 1,4-dioxane 90%
6 Pd(OAc), L1 MeCN 21%
7 Pd(OAc), L1 DMSO 55%
8 Pd(OAc), L1 DMF 41%

a. the reaction was performed in 0.2 mmol scale at 95 °C. L1 were all used in 10 mol% , Pd(OAc), 2 mol%, 1a 0.2 mmol, 2a 0.6

mmol, CO 5 bar, base 0.6 mmol, and water 0.5 mL. b. NMR- yield.

12



S-3.3 Optimization of different phosphine ligands in the carbonylative Heck
coupling of 1a and 2a

CO (5 bar), Pd(OAc), (2 mol%), 0

OTf [P] (10 mol%) =
SARE G

Base (3 eq), water, 95 °C, 10 h

1a 2a 3a

Table S4.Screening different phosphine ligands in the titiled reaction between 1a and 2a in water

Entry? [Pd] [P] Base Solvent Yield® of 3a
1 Pd(OAc), L1 Cs,CO5 H,0 44%
2 Pd(OAc), L2 Cs,CO; H,0 0%
3 Pd(OAc), L3 Cs,CO; H,0 42%
4 Pd(OAc), L4 Cs,CO5 H,0 27%
5 Pd(OAc), L5 Cs,CO; H,0 32%
6 Pd(OAc), L6 Cs,CO3 H,O 15%
7 Pd(OAc), L7 Cs,CO; H,0 0%
8 Pd(OAc), L8 Cs,CO5 H,0 44%
10 Pd(OAc), L6 Cs,CO; H,0 5%
11 Pd(OAc), Dppp Cs,CO; H,0 7%
12 Pd(OAc), Dppf Cs,CO; H,0 2%
13 Pd(OAc), XantPhos Cs,CO; H,O 6%
14 Pd(OAc), PCy; Cs,CO; H,0 0%

a. the reaction was performed in 0.2 mmol scale at 95 °C. L1 were all used in 10 mol% , Pd(OAc), 2 mol%, 1a 0.2 mmol, 2a 0.6

mmol, CO 5 bar, base 0.6 mmol, and water 0.5 mL. b. yields of 3a were determined by 'H-NMR analysis

13



S-4. General procedure for Carbonylative Heck coupling reaction of

aromatic triflate with Styrene in water (GP1)

CO (5 bar) 0
Pd(OAc), (2 mol%)

OTf L9 (10 mol%) X X
O
Cs,CO3 (3 eq),

water, 95°C, 12 h

Scheme S7. Pd(OAc),/ L9 catalyzed carbonylative Heck coupling of 1 with 2 in water

Take 3b for example: To a 25 mL of Schlenk tube equipped with a magnetic stirring bar under N,
were added Pd(OAc), (2.3 mg, 0.01 mmol, 2 mol%), L9 (124.4 mg, 0.05 mmol, 10 mol%),
Cs,CO; (488.7 mg, 1.5 mmol, 3 eq), 4- methoxyphenyl trifluoro- methanesulfonate 4a (128.1 mg,
0.5 mmol, 1.0 eq) and 2 mL of deionized water. Then styrene (177 pL, 1.5 mmol, 3 eq) was added
successively to the mixture. Then, the atmosphere was replaced with 5 bar of CO. The reaction
mixture was stirring at 35 °C. After stirring for 1 h, the reaction mixture was further stirred at 95
°C for about 12 h. After 1b was completely consumed, the reaction mixture was quenched with
saturated aqueous NH4Cl and then diluted with 5 mL of ethyl acetate twice, washed with brine,
dried over Na,SQy, filtered and concentrated. The crude product was purified by silica gel column
chromatography (eluent; petroleum ether: ethyl acetate = 20:1 to 10:1), affording 96.5 mg of

desired product 3b as colorless solid. Yield : 82 % .
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S-5. General procedure for Carbonylative Heck coupling reaction of

aromatic triflates, CO and acrylates in water (GP2)

CO (5 bar)
Pd(OAc), (2 mol%) O
~OTf L9 (10 mol%) N _~__OR,
Rt J + . COOR, ~ R
Cs,CO3 (3 €q), = O
water, 95°C, 12 h
1 4 5

Scheme S8. Pd(OAc),/ L9 catalyzed carbonylative Heck coupling of 1, CO and 4 in pure water

Take 5j for example: To a 5 mL of Schlenk tube equipped with a magnetic stirring bar under N,
were added Pd(OAc), (2.3 mg, 0.01 mmol, 2 mol%), L9 (124.4 mg, 0.05 mmol, 10 mol%),
Cs,CO; (488.7 mg, 1.5 mmol, 3 eq), 4-methylphenyl trifluoro- methanesulfonate (120.1 mg, 0.5
mmol, 1.0 eq) and 1.25 mL of deionized water. Then ethylacrylate (320 puL, 3.0 mmol, 6 eq) was
added successively to the mixture. Then the atmosphere was replaced with 5 bar of carbon
monoxide. The reaction mixture was stirred at 35 °C for 1 h and further stirred at 95 °C for about
12 h. Then the reaction mixture was quenched with saturated aqueous NH,Cl, diluted with 5 mL
of ethyl acetate twice, washed with brine, dried over Na,SQO,, filtered and concentrated. Finally,
the crude product was purified by silica gel column chromatography (eluent; petroleum ether:

ethyl acetate = 15:1 to 10:1), affording 99.5 mg of 5j as colorless oil. Yield : 91 % .
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S-6. General procedure for [3+2] cycloaddition of substituted

chalcones leading to y-lactams (GP3)

o 0
X a XYy o+ Me%kN/OBn Na;COs (2 eq)
R | _ Br H
= /\R Me HFIP, 25 °C
2

3f Ry=-H, Ry=-NO, 6 7a yield: 88% R=-H, R,=-NO,, d.r > 20:1
3d Ry=-PBr, R;=-H 7b yield: 85% R,=-PBr, R,=-H, d.r > 20:1
3¢ Ry=-H, R=-°OMe 7c yield: 84% R,=-H, R,=-°0OMe, d.r > 20:1

Scheme S9. Na,CO;-Prompted [3+2] cycloaddition of 3
Take 7a for example: To a 5 mL of Schlenk tube equipped with a magnetic stirring bar under N,
were added 3a (208 mg, 1.0 mmol) , 6 (135.4 mg, 0.5 mmol), Na,CO5 (160 mg, 1.5 mmol, 3 eq),
and 5 mL of HFIP (1,1,1,3,3,3-Hexafluoroisopropanol). Then the mixture was stirred at room
temperature for about 24 h. After 6 was completely consumed, the reaction mixture was quenched
by a slice of ice. Then the mixture was washed with saturated aqueous NH,4Cl, diluted with 5 mL
of ethyl acetate twice, washed with brine, dried over Na,SQ,, filtered and concentrated. The crude
product was purified by silica gel column chromatography (eluent; petroleum ether: ethyl acetate

=10:1), to give the desired product 7a 195.5 mg as pale yellow solid. Yield : 88 % .
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S-7. Investigation of Recyclability performance of Pd(OAc),/L9

catalytic system on the carbonylative Heck reaction of 1a, CO and 2a

Pd(OAc), (2 mol%) 0o
L9 (10 mol%)

OTf N CO (5bar) O Z O
©/ * ©/\ Cs,CO3 (3 eq),
water, 95 °C, 12 h
1a 2a 3a

Runs? Fresh 1b 2 3 4 5

Yield® (%) 90% 90% 82% 82% 75% 63%

2 All the reaction was performed at 0.5mmol scale. 1a (0.5 mmol), 2a (1.5 mmol), 2 mol% of Pd(OAc),, 10 mol% of L9 ,3 eq of Cs,CO;

and 3 mL of pure water.  The Pd(OAc),/ L9 catalytic system was used in the reaction between 1a, CO (5 bar) and 2a ¢ isolated yields

Procedure for recyclable experiment on the carbonylative Heck coupling reaction between PhOTT,
CO and 2a under Pd(OAc),/ L9 catalytic system in pure water:  After completion of the
carbonylative Heck coupling reaction between PhOTf, CO and 2a, the reaction mixture was
extracted with 5 mL of ethyl acetate twice. The organic phase was collected. The Pd(OAc),/ L9
catalytic system in water phase was subjected to the next run by charging with 1a (0.5 mmol),
styrene (3 mmol) and Cs,CO; (358.4 mg, 2.2 eq). After five runs, the yield of 3a was decreased to
63% .

Description: The moderate recyclability of Pd/L9 catalytic system after five runs in water maybe
caused by the following reasons. 1) The loss of activated Pd species 1I) The oxidation of L9 by

water.
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S-8. Mechanism Study of Carbonylative Heck Reaction

Investigation of coordination behavior of Pd(OAc), and s-triazine based /N, P- Ligands (L1
or L9):

Intially, we explored the possible coordination form of Pd(OAc), and L1( the mother ligand of
L9). Based on our previous work on the coordination behavior of L1 with Pd(OAc),, we believe
the chelation effect is key for the carbonylative Heck coupling between 1a, CO and 2a. The

formation of complex M1 (Scheme S10) was studied by HR-MS and 3'P-NMR.

i 9L
N <

NI SN Pd(OAc), N

ALy - P4-NCWe
Ho MeCN, r.t NH NCMe

1 b
L1 phP

2 ~0 N/J\O/ M1

Scheme S10. Investigation of coordination behavior of Pd(OAc); and L1

When 0.1 mmol of L1, 0.1 mmol of Pd(OAc), and 0.5 mL of MeCN was mixed at room
temperature, the color of solution became dark red. The mixture was analyzed by HR-MS analysis
(Fig S3). HR-MS analysis of the Pd / L1 catalytic system was conducted. As seen in the Fig S3,
the peak at 622.0794 and 1265.1474 were assigned to the [[+H]" and [2[+Na]*, respectively,
These figures indicated that Pd(OAc), and L1-Phos likely coordinated in 1:1 of mol ratio to form
an active palladium species (Fig S4). The N and P atoms of the L1-Phos coordinated to the
Palladium center. The amplifying signals at 620-629 were shown below, which indicating that

presence of mono palladium species.
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Fig S3. HR-MS of Pd(OAc), + L1-Phos (mol ratio= 1:1) (Abstrated from our previous work ')

Aiming at gaining more information on the coordination mode of Pd(OAc), and L1, the reaction
between Pd(OAc), (0.05 mmol) and L1 (0.05 mmol) in CDCIl; was investigated by *'P-NMR
analysis. After 5 min in room temperature, the 3'P-NMR spectrum of a 1:1 reaction showed only
one signal (28.05 ppm). The signal at -12.39 ppm was assigned to -PPh, of L1 (Fig S5). These
results supported that both N and P unit of L1 coordinated to the center of Pd(II) forming a tetra-

coordinated palladium activated species.
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Figure S4. The HR-MS of Pd/L1 complexes (Abstrated from our previous work [2])

28.05

-12.39
*

Figure S5. The comparison of 3'P-NMR spectrum of Pd/ L1 complex (above) and 3'P-NMR spectrum of

L1 (bottom) (Abstrated from our previous work [?1)

Also, we conducted the 3'P-NMR anaylsis of Pd(OAc),/ L9 complex and 3'P-NMR analysis
of L9. (Figure S6). The 3'P-NMR spectrum of L9 in CDCIl; showed four signals at -19.79, -21.14,
-22.33, -25.58 ppm. The 3'P-NMR spectrum of L9/ Pd(OAc), in CDCl; of a 1:1 reaction showed

four signals appeared at 33.50, 32.49, 29.87 and 29.67 ppm. These results suggested that L9

showed the similar coordination mode with its mother ligand L1.
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Figure S6. The comparison of 3'P-NMR spectrum of Pd/ L9 complex (above) and 3'P-NMR spectrum of
L9 (bottom)

Finally, based on our study on the coordination of Pd/L1 and the general accepeted Pd-
catalyzed Heck-type Carbonylative reaction by Wu and Beller, we have made a proposed

mechanism for Pd/L1 catalyzed Heck-type Carbonylative reaction (Figure S11)

9 —0

= N
SRR Rat
* - @
—0 PhyP
1 Pd(OAc),

%N ()Pds,

thp

A ©/ orf
)

~0 \
N >7NH N
N>/7 H—NHy N= co 7O%N O /Pd)
= A Ph3P

m —oO "
Ph*<o PhaP 1
Scheme S11. A proposed mechanism for s-triazine based N,P- ligand L1 controlled Pd-catalyzed Heck-Typed
carbonylative reaction of 1, CO and 2.
Based on the investigation of the coordination behavior of Pd(OAc), with L1 and the generally

accepeted mechanism for Pd-catalyzed Heck-type carbonylative reaction posed by Wu and Beller,
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we proposed a mechanism for s-triazine based N,P- ligands controlled Pd-catalyzed Heck-type
carbonylative reaction of 1a, CO and 2a. We suppose that L1 coordinated with Pd(OAc), to give
(I) species. Then (I) underwent oxidative addition of the aryl triflate to form (II), After CO
insertion process, the acylpalladium (III) intermediate was formed. Then, Coordination and
insertion of the alkene followed by B-hydride elimination produces the desired chalcone 3a and

the active Pd species was regenerated by reaction with Cs,CO; to complete the catalytic cycle.
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S.9 NMR-Data of products and novel N,P-ligands

S-9.1 NMR-Data of Carbonylative Heck coupling products 3

o) In accordance with GP1, 3a was obtained as colorless solid. Yield: 85%.

O = O 'H NMR (600 MHz, CDCL3) § 7.99 (d, J = 7.1 Hz, 2H), 7.77 (d, J = 15.7

Hz, 1H), 7.55 (d, J = 2.9 Hz, 1H), 7.54 (s, 1H), 7.49 (d, J = 9.4 Hz, 1H),
3a 7.48 (s, 1H), 7.42 (s, 1H), 7.41 (d, J = 7.4 Hz, 1H), 7.32 (d, J = 2.0 Hz, 1H),
7.31 (d, J = 1.9 Hz, 2H). *C NMR (151 MHz, CDCl;) § 190.23, 165.75, 144.71, 138.21, 134.89,

132.85, 130.59, 129.00, 128.68, 128.57, 128.54, 122.01.

e} In accordance with GP1, 3b was obtained as pale yellow solid.

O = O Yield: 82%. 'H NMR (600 MHz, CDCl3) & 7.98 (d, J = 8.5 Hz,

MeO 2H), 7.74 (d, J = 15.6 Hz, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.50 (d, J
3b =173 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 7.37 (d, J = 15.6 Hz, 1H),

6.86 (d, J = 8.8 Hz, 2H), 3.74 (s, 3H). 3.C NMR (151 MHz, CDCl;) 3 190.50, 161.71, 144.74, 138.45,

132.62, 130.29, 128.59, 128.43, 127.54, 119.64, 114.44, 55.34.

0 In accordance with GP1, 3¢ was obtained as yellow oil. Yield: 81%. 'H

O Z O NMR (600 MHz, CDCl3) & 7.53 (d, J = 3.8 Hz, 1H), 7.51 (d, J = 6.0 Hz,
1H), 7.49 (d, /= 3.8 Hz, 1H), 7.48 (d, J= 1.7 Hz, 1H), 7.38 (t, /= 7.8 Hz,

3¢ 1H), 7.31 — 7.28 (m, 3H), 7.16 (s, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.91 (d, J

= 8.3 Hz, 1H), 3.80 (s, 3H). 3C NMR (151 MHz, CDCl;) 8 191.98, 157.12, 142.22, 134.17, 131.82,

129.34, 129.20, 128.34, 127.86, 127.38, 126.12, 119.75, 110.66, 54.76.
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O In accordance with GP1, 3d was obtained as pale yellow solid. Yield:
S
Br

3d Hz, 1H), 7.37 — 7.32 (m, 3H). C NMR (151 MHz, CDCl;) & 189.00,

88%.'H NMR (600 MHz, CDCL;) 8 7.82 (d, J = 8.6 Hz, 2H), 7.75 (d,

J=15.7 Hz, 1H), 7.59 — 7.55 (m, 3H), 7.54 (s, 1H), 7.42 (d, J = 15.7

145.26, 136.86, 134.67, 131.90, 130.77, 130.06, 129.68, 129.02, 128.88, 128.74, 128.59, 127.92,

127.49, 121.31.

'e) In accordance with GP1, 3e was obtained as yellow solid.

O = O Yield: 86%.'H NMR (600 MHz, CDCl;)  8.04 (d, J = 8.9 Hz,

Br OMe 2H), 7.80 (d, J = 15.6 Hz, 1H), 7.64 (d, J = 7.7 Hz, 2H), 7.54
3e (d, J = 15.6 Hz, 1H), 7.40 (s, 3H), 6.98 (d, J = 8.9 Hz, 2H),

3.87 (s, 3H). BC NMR (151 MHz, CDCl;) § 188.71, 163.46, 143.97, 135.10, 131.11, 130.85, 130.36,

128.95, 128.39, 121.89, 113.88, 55.51.

0] In accordance with GP1, 3f was obtained as yellow solid. Yield:

O 7 O 44%. 'H NMR (600 MHz, CDCl;) & 8.26 (d, J = 8.7 Hz, 2H), 8.03
O,N

(d, J=7.2 Hz, 2H), 7.79 (dd, J = 17.2, 12.2 Hz, 3H), 7.63 (dd, J =
3f 19.9, 11.6 Hz, 2H), 7.52 (t, J = 7.7 Hz, 2H). 3C NMR (151 MHz,

CDCl;) 6 189.64, 148.56, 141.51, 141.06, 137.54, 133.40, 128.97, 128.85, 128.62, 125.73, 124.23.

o) In accordance with GP1, 3g was obtained as yellow solid. Yield: 35%.

O = O 'H NMR (600 MHz, CDCl;) & 8.00 (d, J = 7.2 Hz, 2H), 7.73 (d, J =

F 15.7 Hz, 1H), 7.57 (dd, J = 8.6, 5.5 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H),
3g 7.46 (d, J = 8.0 Hz, 2H), 7.43 (d, J = 9.7 Hz, 1H), 7.05 (t, J = 8.6 Hz,

2H). 13C NMR (151 MHz, CDCl;) 8 190.08, 164.85 (d, J = 252.2 Hz), 163.18, 143.38, 138.10, 132.87,

131.17, 130.43 (d, J=9.1Hz) , 128.66, 121.69, 116.16 (d, J=21.1Hz).
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O In accordance with GP1, 3h was obtained as yellow solid. Yield:

o~
O O 77%. H NMR (600 MHz, CDCly) 5 7.81 (d, J = 7.2 Hz, 2H), 7.41

(dd, J = 14.9, 10.8 Hz, 1H), 7.34 (t, J = 7.3 Hz, 1H), 7.27 (t, J = 7.5
3h Hz, 4H), 7.16 (t, J = 7.4 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 6.89 (d, .J
— 14.9 Hz, 1H), 6.80 (dd, J = 15.5, 10.8 Hz, 1H), 6.73 (d, J = 15.6 Hz, 1H). *C NMR (151 MHz,
CDCly) § 190.25, 144.84, 141.95, 138.26, 136.14, 132.74, 129.30, 128.93, 128.67, 128.47, 127.42,

127.01, 125.39.

0 In accordance with GP1, 3i was obtained as yellow solid. Yield:

OO = O 80%. 'H NMR (600 MHz, CDCl;) & 8.57 (d, J = 15.4 Hz, 1H), 8.15
(d, J = 8.4 Hz, 1H), 7.98 (d, J = 7.3 Hz, 2H), 7.83 — 7.76 (m, 3H),

3i 7.52 (d, J=15.5 Hz, 1H), 7.50 — 7.45 (m, 2H), 7.42 (dt, J= 7.6, 6.1

Hz, 4H). C NMR (151 MHz, CDCl;) & 190.32, 141.76, 138.22, 133.78, 132.92, 132.41, 131.81,

130.86, 128.81, 128.72, 128.63, 127.02, 126.35, 125.49, 125.14, 124.71, 123.53.

In accordance with GP1, 3j was obtained as yellow solid.

0
= .
O O Yield: 82%. "H NMR (600 MHz, CDCl3) § 7.98 (d, J = 8.7
MeO OMe
3

Hz, 2H), 7.72 (d, J = 15.5 Hz, 1H), 7.50 (d, J = 8.2 Hz, 2H),
) 7.38 (d, J = 15.5 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 6.83 (d,
J = 8.3 Hz, 2H), 3.75 (s, 3H), 3.72 (s, 3H). *C NMR (151 MHz, CDCl;) 5 188.49, 163.26, 161.48,

143.72,131.21, 130.68, 130.14, 127.67, 119.29, 114.35, 113.77, 55.37, 55.27.

0 In accordance with GP1, 3k was obtained as pale-yellow solid. Yield:
74 ’ 7 85%.'"H NMR (400 MHz, CDCls) 6 8.04 — 7.99 (m, 2H), 7.81 (d, J = 15.6
S Hz, 1H), 7.59 (d, /= 1.6 Hz, 1H), 7.57 (d, J= 7.3 Hz, 1H), 7.49 (t, J= 7.5
3k

Hz, 2H), 7.43 (d, J = 4.6 Hz, 1H), 7.39 — 7.33 (m, 2H). 3C NMR (101 MHz,

CDCly) 8 192.22, 139.73, 139.65, 139.60, 134.19, 130.70, 130.07, 129.89, 128.53, 126.70, 123.22.
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) In accordance with GP1, 31 was obtained as pale-yellow

_— NO,
O O solid. Yield: 86%. 'H NMR (600 MHz, CDCly) & 7.94 (s,
~o

1H), 7.84 (d, J = 7.8 Hz, 1H), 7.76 (d, J = 15.6 Hz, 1H), 7.55
3l
(d, J=8.7 Hz, 2H), 7.48 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.8
Hz, 1H), 7.31 (d, J = 15.6 Hz, 1H), 6.89 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H). 3C NMR (151 MHz, CDCl;)

5 188.87, 161.91, 145.48, 140.06, 134.80, 132.41, 130.41, 129.86, 128.44, 127.31, 126.45, 118.92,

114.45, 55.32.
0 In accordance with GP1, 3m was obtained as pale-yellow solid.
72 ] = Yield: 81%.'H NMR (600 MHz, CDCls) 6 7.90 (d, J = 8.1 Hz, 2H),
S Me 7.77 (d,J=15.6 Hz, 1H), 7.55 (d, J = 2.0 Hz, 1H), 7.39 (d, /= 5.0
3m

Hz, 1H), 7.32 (dd, J = 13.3, 10.3 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H),
2.38 (s, 3H). *C NMR (151 MHz, CDCl;) § 190.38, 143.62, 138.20, 137.98, 135.55, 129.30, 129.09,

128.59, 126.98, 125.28, 121.69, 21.57.

0 In accordance with GP1, 3n was obtained as pale-yellow solid. Yield:

O = O 77%. 'H NMR (600 MHz, CDCl;) § 8.03 (dd, J = 8.7, 5.5 Hz, 2H),
F 773 (s, 1H), 7.66 (d, J = 15.7 Hz, 1H), 7.49 (s, 1H), 7.46 (t, /= 10.0

¢ an Hz, 2H), 7.24 (t, J = 7.8 Hz, 1H), 7.14 (t, J = 8.6 Hz, 2H). 3C NMR
(151 MHz, CDCl;) & 188.18, 166.53 (d, J = 255.2 Hz), 143.06, 136.85,

134.19, 133.29, 131.20 (d, J=9.1 Hz), 131.14, 130.83, 130.46, 127.27, 123.08 (d, J= 61.9 Hz), 122.67,

115.87 (d, J = 22.7Hz).

0] In accordance with GP1, 30 was obtained as pale-yellow solid. Yield:

7 38%. "H NMR (600 MHz, CDCl3) & 8.40 (s, 1H), 8.24 (d, J = 8.2 Hz,
26
o]
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1H), 7.89 (d, J = 7.8 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.53 (d, J = 13.2 Hz, 1H), 7.52 — 7.50 (m, 1H),
7.47 (s, 1H), 7.46 (d, J = 1.5 Hz, 1H), 7.41 — 7.38 (m, 1H), 7.26 (d, J = 16.1 Hz, 1H). *C NMR (151
MHz, CDCly) & 192.83, 148.73, 142.45, 138.56, 136.27, 133.96, 131.97, 130.45, 129.55, 128.65,

127.07, 124.91, 122.86.

0 In accordance with GP1, 3p was obtained as pale-yellow solid. Yield: 78%.
O = O IH NMR (600 MHz, CDCl5) & 8.01 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 15.7

Hz, 1H), 7.51 (dd, J = 16.7, 11.4 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.39 (d,

Me
3p J=1.3Hz, 2H), 7.24 (d, J= 7.5 Hz, 1H), 7.16 (d, J= 7.5 Hz, 1H), 2.33 (s,
3H). 3C NMR (151 MHz, CDCl;) 6 190.43, 145.05, 138.57, 138.23,

134.82,132.80, 131.48, 129.17, 128.87, 128.64, 128.55, 125.75, 121.76, 21.32.

O In accordance with GP1, 3q was obtained as pale-yellow solid. Yield: 73%.

O 7 'H NMR (600 MHz, CDCl3) 8 7.99 (d, J = 7.7 Hz, 2H), 7.70 (s, 1H), 7.64
(d, J=15.7 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.48 (s, 1H), 7.45 (s, 3H),

3q 7.44 (s, 1H), 7.20 (t, J = 7.8 Hz, 1H). 3C NMR (151 MHz, CDCl;) §
189.83, 142.84, 137.83, 136.98, 133.21, 133.06, 130.89, 130.47, 128.72, 128.59, 127.25, 123.13,

123.08.

9 In accordance with GP1, 3r was obtained as pale-yellow solid. Yield: 75%.
=
O O 'H NMR (600 MHz, CDCly) 8 7.82 (s, 2H), 7.73 (s, 1H), 7.66 (d, J = 15.6

! L Hz 1, 7.49 (7= 139 Hz, 3H), 7.36 (5, 2H), 7.23 (4 = 6.8 Hz, 11,
r e

3r 2.41 (s, 3H). 3C NMR (151 MHz, CDCl;) & 189.87, 142.57, 138.49,

137.90, 137.07, 133.83, 133.13, 130.86, 130.44, 129.09, 128.56, 127.22, 125.80, 123.30, 123.07, 21.43.

S-9.2 NMR-Data of Carbonylative Heck coupling products S
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(o) In accordance with GP2, 85.6 mg of 5a was obtained as colorless oil.
= OMe )
Yield: 90%.'H NMR (400 MHz, CDCl;) 6 7.86 (d, J = 7.4 Hz, 2H), 7.79
(d, J=15.6 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 2H),
5a
6.75 (d, J = 15.6 Hz, 1H), 3.71 (s, 3H). 3C NMR (101 MHz, CDCl;) §
189.17, 165.86, 136.49, 136.46, 133.81, 131.93, 128.83, 128.78, 52.24. HR-MS (ESI positive ion

mode): m/z: caled.for C;{H;;05" : 191.0703 [M+H]". Found: 191.0701.

e} In accordance with GP2, 89.8 mg of Sb was obtained as red oil. Yield:

OB ggo, 11 NMR (400 MHz, CDCl;) & 7.89 (d, J = 7.8 Hz, 2H), 7.80 (d, J =

15.6 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 6.77 (d, J

%0 =15.6 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H). 13C
NMR (101 MHz, CDCls) § 189.42, 165.48, 136.57, 136.32, 133.79, 132.53, 129.08, 128.84, 128.82,

61.33, 14.14. HR-MS (ESI positive ion mode): m/z: calcd.for C;,H;;05" : 205.0859 [M+H]". Found:

205.0855.
o In accordance with GP2, 98.6 mg of 5S¢ was obtained as colorless oil.
= O"BU  Yield: 85%. '"H NMR (600 MHz, CDCl3) 6 7.93 — 7.86 (m, 2H), 7.82
O (dd, J=15.6,2.9 Hz, 1H), 7.52 (dd, J=11.1, 7.2 Hz, 1H), 7.41 (dd, J =
5¢ 11.8, 7.5 Hz, 2H), 6.80 (dd, J = 15.6, 3.6 Hz, 1H), 4.15 (td, J = 6.6, 3.5

Hz, 2H), 1.66 — 1.54 (m, 2H), 1.34 (ddd, J = 14.8, 7.5, 3.4 Hz, 2H), 0.87 (td, J = 7.4, 3.4 Hz, 3H). 13C
NMR (151 MHz, CDCl3) & 189.48, 165.62, 136.61, 136.35, 133.81, 132.58, 128.86, 65.24, 30.56,
19.11, 13.68. HR-MS (ESI positive ion mode): m/z: calcd.for C4H;705" : 233.1772 [M+H]*. Found:

233.1772.

In accordance with GP2, 102.1 mg of Sd was obtained as colorless

O
o o )
oil. Yield: 88%. 'H NMR (600 MHz, CDCl3) 8 7.91 (d, J= 8.1 Hz,
9] 28
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2H), 7.83 (d, J = 13.8 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.43 (t, J = 7.1 Hz, 2H), 6.82 (d, J = 15.5 Hz,
1H), 3.95 (dd, J = 6.7, 1.8 Hz, 2H), 1.94 (dp, J = 13.4, 6.7 Hz, 1H), 0.90 (d, J = 6.8 Hz, 6H). *C NMR
(151 MHz, CDCls) § 189.55, 165.63, 136.62, 136.40, 133.84, 132.59, 128.89, 128.86, 71.42, 27.73,

19.07. HR-MS (ESI positive ion mode): m/z: calcd.for C4H;0;" : 233.1772 [M+H]*. Found:233.1770.

9] In accordance with GP2, 109.2 mg of Se was obtained as colorless oil.
7 OBn Yield: 82%. 'H NMR (600 MHz, CDCl;) é 7.90 (d, J = 7.3 Hz, 2H), 7.86
(d, J=15.6 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H),
5e 7.31 (q, J = 8.0 Hz, 3H), 7.28 — 7.24 (m, 2H), 6.85 (d, J = 15.6 Hz, 1H),
5.19 (s, 2H). 13C NMR (151 MHz, CDCl;) 6 189.47, 165.41, 136.90, 136.57, 135.36, 133.90, 132.22,
128.92, 128.90, 128.70, 128.55, 128.42, 67.16. HR-MS (ESI positive ion mode): m/z: calcd.for

Cy7H50;5" : 267.1016 [M+H]*. Found: 267.1016.

(o) In accordance with GP4, 127.1 mg of 10f was obtained as red

= OPh ) .
solid. Yield: 90%. '"H NMR (600 MHz, CDCls) 6 8.04 (d, J = 15.6
MeO Hz, 1H), 8.00 (d, J = 7.8 Hz, 2H), 7.60 (t, J= 7.2 Hz, 1H), 7.49 (t,
f
5 J=17.6 Hz, 2H), 7.08 (d, J = 8.9 Hz, 2H), 6.90 (d, J = 8.9 Hz, 2H),
3.76 (s, 3H). 3C NMR (151 MHz, CDCls) & 189.16, 164.34, 157.55, 143.95, 137.75, 136.51, 134.00,
131.73, 128.97, 128.93, 122.14, 116.07, 114.78, 114.57, 55.57. HR-MS (ESI positive ion mode): m/z:

calcd.for Ci7H 504" : 283.0965 [M+H]*. Found: 283.0964.

o In accordance with GP2, 118.5 mg of 5g was obtained as
= O\Q red solid. Yield: 78%. 'H NMR (600 MHz, CDCl;) 3 8.05
© (d, /= 8.0 Hz, 2H), 8.00 (d, J= 15.5 Hz, 1H), 7.66 (t, J =

29
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7.3 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.03 — 6.95 (m, 3H), 5.30 (s, 2H), 3.85
(s, 3H). BC NMR (151 MHz, CDCl3)  189.19, 165.33, 159.86, 136.58, 133.78, 132.25, 130.31, 129.01,
128.85, 128.83, 128.64, 127.54, 114.05, 66.91, 55.16. HR-MS (ESI positive ion mode): m/z: calcd.for

CisH604Na" : 319.0941 [M+Na]". Found: 319.0940.

(0] In accordance with GP2, 117.2 mg of Sh was obtained as

= O\@ colorless oil. Yield: 88%. 'H NMR (600 MHz, CDCly) & 7.93

Me ° (d, J=15.6 Hz, 1H), 7.89 (d, J = 7.9 Hz, 2H), 748 (t, /= 7.4
Sh Hz, 1H), 7.37 (t, J= 7.6 Hz, 2H), 7.06 (d, J = 8.1 Hz, 2H), 6.96

—6.89 (m, 3H), 2.21 (s, 3H). 3C NMR (151 MHz, CDCl;) 3 189.16, 164.19, 148.27, 137.78, 136.52,
135.91, 134.01, 131.78, 130.10, 128.98, 128.95, 121.06, 20.92. HR-MS (ESI positive ion mode): m/z:

calcd.for C;H;4O;3;Na* : 289.0835 [M+Na]*. Found: 289.0835.

0 In accordance with GP2, 82.4 mg of 5i was obtained as yellow oil.
= o~ ..
Yield: 69%. '"H NMR (600 MHz, CDCl;) & 7.86 (d, J = 8.4 Hz,
Cl 2H), 7.77 (d, J = 15.5 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 6.80 (d, J
5i =15.5 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H).
BC NMR (151 MHz, CDCl;) & 188.23, 165.38, 140.43, 135.79, 134.96, 133.01, 130.22, 129.24, 61.45,

14.15. HR-MS (ESI positive ion mode): m/z: calcd.for C;,H;;CIO;Na* : 261.0289 [M+Na]*. Found:

261.0289.
o) In accordance with GP2, 97.4 mg of 5j was obtained as colorless
= O~ oil. Yield: 91%. '"H NMR (600 MHz, CDCls) § 7.82 (d, J = 8.5 Hz,
O
Me 2H), 7.81 (d, J=15.5 Hz, 1H), 7.22 (d, /= 7.9 Hz, 2H), 6.78 (d, J

30
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= 15.5 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). *C NMR (151 MHz,
CDCLy) & 188.97, 165.63, 144.88, 136.54, 132.18, 129.57, 129.00, 61.29, 21.73, 14.16. HR-MS (ESI

positive ion mode): m/z: caled.for C;3H;505* : 219.1016 [M+Na]*. Found: 219.1016.

0 In accordance with GP2, 126.2 mg of 5k was obtained as

Z O\©\ colorless oil. Yield: 88%. 'H NMR (400 MHz, CDCl3) 8 7.95 (d,

© Cl J=155Hz, 1H), 7.89 (d, J = 7.4 Hz, 2H), 7.50 (t, J/ = 7.4 Hz,

Sk 1H), 7.38 (t, J = 7.7 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 7.00 (d, J

= 8.8 Hz, 2H), 6.93 (d, J = 15.5 Hz, 1H). 13C NMR (101 MHz, CDCl;) & 188.91, 163.74, 148.88,
138.23, 136.38, 134.12, 131.60, 131.22, 129.63, 129.00, 128.94, 122.80. HR-MS (ESI positive ion

mode): m/z: caled.for CsH;;CIO;Na* : 309.0289 [M+Na]*. Found: 309.0288.

0 In accordance with GP2, 145.7 mg of 51 was obtained as

= O\© yellow solid. Yield: 91%. '"H NMR (600 MHz, CDCl;) & 8.00
FsC ° (d, J=15.5Hz, 1H), 7.92 (d, J= 7.7 Hz, 2H), 7.57 (d, /= 8.4
51 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H),
7.20 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 15.5 Hz, 1H). 3*C NMR (151 MHz, CDCl;) 6 188.88, 163.47,
152.87, 138.59, 136.37, 134.14, 130.96, 129.01, 128.93, 128.82 (q, J = 262 Hz, Cquat), 126.97
(q,Cquat), 121.94. HR-MS (ESI positive ion mode): m/z: calcd.for C;H,F;05": 321.0733 [M+H]*.

Found: 321.0733.

O Me In accordance with GP2, 145.7 mg of Sm was obtained as yellow liquid.
= SN Yield: 71%. '"H NMR (600 MHz, CDCl;) 8 7.85 (d, J = 8.5 Hz, 2H), 7.62

© (s, 1H), 7.47 (t, J= 7.4 Hz, 1H), 7.37 (t, J = 7.8 Hz, 2H), 3.74 (s, 3H), 2.08

Sm (s, 3H). 3C NMR (151 MHz, CDCl;) 8 191.27, 166.77, 139.37, 136.40,
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132.52,130.90, 127.72, 127.55, 51.50, 13.68.

O Me In accordance with GP2, 145.7 mg of 5n was obtained as yellow liquid.

2N O Yield: 70%. 'H NMR (600 MHz, CDCly) 3 7.85 — 7.77 (m, 2H), 7.59 (d,

o)
J=1.5Hz, 1H), 7.42 (t, J= 7.4 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 4.15
n
° (dd, J = 14.4, 7.2 Hz, 2H), 2.05 (s, 3H), 1.25 — 1.16 (m, 3H). *C NMR

(151 MHz, CDCl;) & 192.18, 167.16, 140.68, 137.42, 133.40, 131.57, 128.66, 128.48, 61.42, 14.60,
14.09.

S-9.3 NMR-Data of [3+2] cycloaddition products 7a-7¢

0 In accordance with GP3, 195.5 mg of 7a was obtained as
Me N-O~PN Sellow solid. Yield: 88%. 'H NMR (400 MHz, CDCl;) & 8.09
Me « « 32
OoN Ph
@)

Ta



(d, J=8.7 Hz, 2H), 7.55 (dd, J = 6.5, 2.8 Hz, 2H), 7.44 — 7.35 (m, 5H), 7.23 — 7.15 (m, 5H), 6.80 (d, J
=16.1 Hz, 1H), 6.59 (d, J = 16.1 Hz, 1H), 4.92 (d, J = 9.6 Hz, 1H), 4.39 (d, J = 9.6 Hz, 1H), 1.44 (d, J
= 6.7 Hz, 6H). *C NMR (101 MHz, CDCl3) § 170.04, 147.51, 142.00, 139.00, 133.90, 132.82, 130.64,

129.86, 129.62, 129.14, 128.67, 128.49, 127.65, 126.96, 124.04, 92.34, 78.89, 78.16, 26.05, 25.48.

0 In accordance with GP3, 202.5 mg of 7b was obtained as yellow

me N0~ PN Solid. Yield: 85%. 'H NMR (400 MHz, CDCI3) § 7.49 (q, J = 8.7

Br ) y ;h Hz, 4H), 7.39 — 7.24 (m, 10H), 6.77 (d, /= 16.1 Hz, 1H), 6.45 (d,
0 7 J=16.1 Hz, 1H), 4.98 (d, J = 9.7 Hz, 1H), 4.66 (d, J = 9.7 Hz,

1H), 1.51 (s, 3H), 1.46 (s, 3H). *C NMR (101 MHz, CDCL;) &
170.43, 138.89, 135.39, 133.87, 133.85, 131.65, 129.80, 129.13, 128.91, 128.79, 128.77, 128.53,

127.58, 127.10, 123.64, 92.70, 79.01, 78.11, 25.93, 25.55.

o In accordance with GP3, 202.5 mg of 7¢ was obtained as yellow solid.

Me N-O~-PN Yield: 84%. 'H NMR (400 MHz, CDCly) 8 7.53 (d, J = 6.3 Hz, 1H),

" F”,‘h 7.31-7.21 (m, 1H), 7.17 — 7.02 (m, 2H), 6.75 (d, J = 7.5 Hz, OH), 6.68

O (d, J= 8.3 Hz, OH), 6.53 (d, J = 16.2 Hz, 0H), 4.87 (d, J = 9.5 Hz, OH),
OMe 7c

4.48 (d, J = 9.5 Hz, OH), 3.59 (s, 3H), 1.39 (d, J = 24.6 Hz, 2H). 13C
NMR (101 MHz, CDCly) & 170.14, 157.39, 140.29, 134.30, 129.66, 129.63, 129.19, 128.93, 128.80,
128.72, 128.47, 128.44, 127.85, 127.27, 124.82, 120.68, 111.03, 93.19, 78.83, 77.93, 55.44, 26.05,

25.67.

S-9.4 NMR-Data of Novel s-triazine derived Schiff-base V,P ligands

o 'H NMR (600 MHz, CDCl3) & 9.24 (s, 1H), 9.04 (s, 1H),
N)%N 8.59 (s, 1H), 8.12 (s, 1H), 7.48 (t, J= 7.3 Hz, 1H), 7.36 (t,
o)l\N/)\N J=17.1Hz, 1H), 7.31 (s, 10H), 7.22 (s, 1H), 7.02 — 6.98
H SN (m, 1H), 6.96 (t, J = 6.9 Hz, 1H), 6.90 (s, 1H), 4.55 (s,
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2H), 4.12 (t, J = 10.7 Hz, 2H), 3.94 (d, J = 78.3 Hz, 3H). 3C NMR (151 MHz, CDCl;) é 171.16,
165.89, 158.08, 139.13, 138.79, 138.68, 136.52, 134.21, 134.00, 133.87, 133.42, 131.07, 129.01,
128.94, 128.72, 128.67, 127.60, 123.01, 119.54, 116.74, 65.32, 60.41, 54.96. 3'P NMR (243 MHz,
CDCl3) & -12.24. HR-MS (ESI): m/z: calcd.for C3;HpNsO3P* 550.1930 [M+H]* and 572.1827

[M+Na]*. Found: 550.1928 and 572.1826.

J 'H NMR (600 MHz, CDCl;) 8 8.42 (s, 1H), 7.85 (s, 1H), 7.64
>=N 0 (s, 1H), 7.54 (d,J = 7.8 Hz, 1H), 7.38 (d, J = 6.4 Hz, 1H), 7.31
N )—NH HN PPh,
N (s, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.25 — 7.17 (m, 10H), 7.11 (t,
—0

J=17.5Hz, 1H), 7.07 (d, J = 7.3 Hz, 1H), 6.94 (s, 1H), 3.81 (s,

= 6H). *C NMR (151 MHz, CDCl3) & 172.49, 167.67, 167.13,
156.93, 140.79, 136.46, 136.40, 134.24, 133.95, 133.82, 130.69, 130.52, 128.98, 128.95, 128.67,
128.62, 128.41, 128.38, 126.16, 126.05, 125.70, 125.13, 54.83. 3P NMR (243 MHz, CDCl;) & -10.68.

HR-MS (ESI): m/z: calcd.for C30Hy6NsO3PNa*™ 558.1665 [M+Na]*. Found: 558.1663.

'H NMR (600 MHz, CDCL;) § 9.03 (s, 1H), 8.06 (d, J = 6.7 Hz,

OMe
PPh, HN/©/ 1H), 7.80 (d, J = 3.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.39 (d, J

@N = 7.0 Hz, 2H), 7.37 — 7.35 (m, 1H), 7.29 (dd, J = 15.4, 9.3 Hz,

10H), 7.13 (d, J = 12.1 Hz, 2H), 6.96 — 6.94 (m, 2H), 6.87 (d, J

- =9.0 Hz, 2H), 3.81 (s, 3H), 3.74 (s, 1H). 3C NMR (151 MHz,
CDCls) & 155.66, 139.35, 137.13, 135.38, 134.04, 133.90, 130.46, 128.79, 128.60, 128.55, 124.15,
122.32, 119.76, 119.51, 118.69, 117.96, 117.13, 114.50, 114.37, 112.41, 55.56. 3'P NMR (243 MHz,

CDCl3) 8 -16.51. HR-MS (ESI): m/z: caled. for C3,HpgN,OP* 487.1934 [M+H]*. Found: 487.1933.

/ 'H NMR (600 MHz, CDCl3) & 9.25 (s, 1H), 8.90 (d, J = 8.5
Q Hz, 1H), 8.62 (s, 2H), 8.21 (d, J = 7.1 Hz, 1H), 8.00 (d, J =

N )—NH N=
N O 8.1 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.79 — 7.69 (m, 1H),
O 7.63 (t, J = 7.5 Hz, 1H), 7.59 — 7.54 (m, 2H), 7.32 (t, J = 7.5

L7 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 3.97 (d, J = 40.0 Hz, 6H).
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BCNMR (151 MHz, CDCl3) 6 172.43, 167.42, 165.94, 158.67, 139.90, 132.47, 131.62, 131.10, 130.33,
129.83, 128.98, 127.56, 125.40, 123.61, 123.34, 119.86, 116.81, 54.91. HR-MS (ESI): m/z: calcd.for

C1oHpNsO,* 386.1612 [M+H]". Found: 386.1611.

o~ 'H NMR (600 MHz, CDCl;) § 9.00 (d, J=4.5
N&N Hz, 2H), 8.08 (dd, J = 7.3, 3.5 Hz, 2H), 7.44 (t,
AC
H N H J =15 Hz, 3H), 7.34 — 7.28 (m, 26H), 7.00 —
N Na
- 6.97 (m, 2H), 6.94 (dd, J = 7.5, 4.6 Hz, 2H),
Ph,P PPh,

6.75 (d,J=8.9 Hz, 2H), 6.64 (dd, J=17.2,7.7

L8 Hz, 4H), 4.01 (s, 4H). 3C NMR (151 MHz,

CDCly) & 156.53, 156.43, 142.41, 139.67, 139.56, 138.21, 138.07, 137.33, 137.27, 137.23, 134.09,
133.96, 130.45, 129.58, 128.81, 128.75, 128.67, 128.62, 127.72, 118.19, 117.43, 115.26, 60.41. 3P
NMR (243 MHz, CDCl;) & -11.71. HR-MS (ESI): m/z: calcd.for Cs4H44N,OP,* 868.3077 [M+H]".

Found: 868.3071.

Characterization: L9 was characterized by 3'P-NMR, elemental analysis and FT-IR analysis.
Initially, we made comparison of 3'P-NMR of L2 (starting material) with L8 (Fig S1). The peak (5
=-17.14 ppm) was assigned to the L.2-Phos Ligand. When L2 underwent nucleophilic substitution
with methoxypolyethylene-2000 under strong base conditions, the L9 was formed. Through 3'P-
NMR analysis, the signals (& = -19.79, -21.14, -22.33 and -25.58 ppm) was assigned to the L9-
Phos ligand. No positive signals were observed at 3'P-NMR spectrum, indicating that the L9 was
not been oxidatived to P=O compound. Then, FT-IR analysis was conducted (Fig S2). Through
the comparison of L9, L2 and methoxypolyethylene-2000, we clearly observed that the peak (v
(OH)=- 3458.42 cm’") of methoxypolyethylene-2000 was disappeared as the result of the
nucleophilic substitution with L7. Simultaneously, the new peaks (v(-OCH;)= 2885.91, 2685.34,
2737.15 cm!) appeared. Compared with the spectrum of L2, these peaks was slightly blueshifted.
Also, the peak (v(-C=N): 1632.26 cm!) of L2 was slightly red-shifted to 1632.26 cm-!, which

indicating that the s-triazinal unit was grafted at the end of methoxypolyethylene glycol-2000.
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Fig S1. Comparison of 3'P-NMR of L9 (blue line) with Fig S2. Comparison of FT-IR spectrum of L9 with
L2 (red line) that of L2 and methoxypolyethylene.

Fig S3. The elemental analysis of L9 at C,H,O,N mode.
Finally, in order to identify the stucture of L9, elemental analysis was conducted (Fig S3). The

results demonstrate that the L9 has been synthesized successfully.

C% H% N% 0% P%
Measured 57.18 8.37 2.80 30.35 1.30
Calculated 57.20 8.35 2.81 30.40 1.24

S-10. NMR Spectrum of products and ligands

S-10.1 NMR-Spectrum of carbonylative Heck products 3
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S-10.2 NMR Spectrum of Carbonylative Heck coupling products 5
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S-10.3. NMR Spectrum of [3+2] cycloaddition product 7
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