Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Asymmetric Vinylogous Mukaiyama Aldol Reaction of Isatins under Bifunctional Organocatalysis: Enantioselective Synthesis of Substituted 3-Hydroxy-2-Oxindoles

Víctor Laina-Martín,^a Jorge Humbrías-Martín,^a José A. Fernández-Salas,*^a and José

Alemán*^{a,b}

^a Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain. E-mail: j.fernandez@uam.es; jose.aleman@uam.es; webpage: <u>www.uam.es/jose.aleman</u>.

^b Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain

⁴ These authors have contributed equally to this work

1. General Methods and Starting Materials	S2
2. Synthesis and characterization data of isatins 1	S 3
3. Synthesis and characterization data of silyl dienol ethers 2	S 9
4. Optimisation table S	11
5. Synthesis and characterization data of 3-hydroxy-2-oxoindolin-3-ylbut-2-enals 4	12
6. Spectroscopical data S	25

1. General Methods and Starting Materials

All solvents were dried using activated 4Å molecular sieves and stored under nitrogen. 4Å molecular sieves, 1.6-2.5 mm of particle size, were activated by microwave (700W) (3 x 60 sec) and subsequent cycles of vacuum/nitrogen. Catalyst 3a and 3b were acquired from commercial sources and catalysts **3c**, **3d**, **3e** and **3f** were synthesized following a procedure described in the literature.¹ For thin layer chromatography (TLC) silica gel plates with fluorescence indicator 254 nm were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of potassium permanganate in water followed by heating. Flash column chromatography was performed using latrobeads 6RS-8060 silica gel and compressed air. Celite® 512 medium was used for some filtrations. Cyclohexane, ethyl acetate, dichloromethane and diethyl ether for flash chromatography were acquired from commercial sources and were used without previous purification. Optical rotation was recorded in cells with 10 cm path length; the specific solvents and concentrations (in g/100 mL) are indicated. NMR spectra were acquired on a Bruker Avance 300 MHz spectrometer, running at 300, 75 and 282 MHz for ¹H, ¹³C and 19 F respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl₃, 7.26 ppm for ¹H NMR and 77.2 ppm for ¹³C NMR respectively). ¹³C NMR spectra were acquired on a broad band decoupled mode. The following abbreviations are used to describe peak patterns when appropriate: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), bs (broad singlet). Different methods have been used for measuring the exact mass (indicated for each case): MS (ESI) (Electrospray ionization mass spectroscopy) was acquired with an Agilent Technologies 6120 Quadrupole LC/MS and MS (EI) (Electron Ionization mass spectroscopy) was acquired with an Agilent Technologies 5977B MSD. In these two techniques, MassWorks software ver. 4.0.0.0 (Cerno Bioscience) was used for the formula identification. MassWorks is a MS calibration software which calibrates for isotope profile as well as for mass accuracy allowing highly accurate comparisons between calibrated and theoretical spectra.²

Enantiomeric excesses were determined in a Supercritical Fluid Chromatography (SFC) with chiral columns. The chromatograms were acquired with an *Agilent Technologies 1260 Infinity*

¹ C. Cassani, R. Martín-Rapún, E. Arceo, F. Bravo and P. Melchiorre, *Nature Protocols*. 2013, **8**, 325–344. ² a) Y. Wang and M. Gu, *Anal. Chem.* 2010, **82**, 7055-7062; b) Y. Wang, Methods for Operating MS Instrument Systems, United States Patent No. 6,983,213, **2006**; c) N. Ochiaia, K. Sasamoto, K. MacNamara *Journal of Chromatography A*, 2012, **1270**, 296-304; d) H.-P. Ho, R.-Y. Lee, C.-Y. Chen, S.-R. Wang, Z.-G. Li and M.-R. Lee, *Rapid Commun. Mass Spectrom*. 2011, **25**, 25-32.

with a *SFC module* and a UV-vis detector. The chiral columns used were: Chiralpak IA, IB-3, IC, ID-3, IG-3 (see in each case).

2. Synthesis and characterization data of isatins 1

General procedure A: Synthesis of isatins 1

The corresponding isatin (1.25 mmol, 1.0 eq) and K_2CO_3 (519 mg, 3.75 mmol, 3.0 eq.) were dissolved in 6.0 mL of MeCN. Then, the corresponding alkylhalide (1.38 mmol, 1.1 eq.) was added and the reaction mixture was stirred for 24h at 80°C. The reaction was monitored by ¹H NMR and, once completed, the solution was concentrated *in vacuo*. The crude mixture was dissolved in ethyl acetate, washed with water (3 x 10 mL), dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. The final products **1** were used without further purification.

1-Methylindoline-2,3-dione (1b)³

Following general procedure A, isatin (184 mg, 1.25 mmol) and iodomethane (196 mg, 1.38 mmol) after 24h, gave **1b** as an orange solid (78% yield). The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 7.65 – 7.56 (m, 2H), 7.18 – 7.09 (m, 1H), 6.94 – 6.86 (m, 1H), 3.26 (s, 3H).

1-Benzylindoline-2,3-dione (1c)⁴

Following general procedure A, isatin (184 mg, 1.25 mmol) and benzyl bromide (236 mg, 1.38 mmol) after 24h, gave **1c** as an orange solid (81% yield). The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 7.64 – 7.56 (m, 1H), 7.49 (td, *J* = 7.8, 1.4 Hz, 1H), 7.40 – 7.24 (m, 5H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.78 (d, *J* = 7.9 Hz, 1H), 4.90 (s, 2H).

1-[4-(tert-Butyl)benzyl]indoline-2,3-dione (1d)

Following general procedure A, isatin (184 mg, 1.25 mmol) and 1-(bromomethyl)-4-(*tert*-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1d** as an orange solid (71% yield).

¹**H-NMR:** δ 7.64 – 7.56 (m, 1H), 7.49 (td, *J* = 7.8, 1.4 Hz, 1H), 7.40 – 7.24

(m, 4H), 7.08 (td, J = 7.6, 1.0 Hz, 1H), 6.85 – 6.80 (m, 1H), 4.89 (s, 2H), 1.29 (s, 9H). ¹³C-NMR: δ

³ A. A. Nagle, S. A. Reddy, H. Bertrand, H. Tajima, D. Truong-Minh, S. Wong, J. D. Hayes, G. Wells and E. Chew, *Chem. Med. Chem.* 2014, **9**, 1763-1774.

⁴ A. Kamal, K. S. Babu, M. V. P. S. V. Vardhan, S. M. A. Hussaini, R. Mahesh, S. P. Shaik and A. Alarifi, *Bioorg. Med. Chem. Lett.* 2015, **25**, 2199–2202.

183.5, 158.4, 151.4, 151.1, 138.4, 131.6, 127.4 (2C), 126.1 (2C), 125.5, 123.9, 117.9, 111.2, 43.9, 34.7, 31.4 (3C). **HRMS (ESI):** calculated for C₁₉H₂₀NO₂⁺ [M+H]⁺: 294.1489; found: 294.1466.

1-[4-(*tert*-Butyl)benzyl]-6-methoxyindoline-2,3-dione (1e)

Following general procedure A, 6-methoxyisatin (222 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1e** as an orange solid (66% yield). **¹H-NMR:** δ 7.58 (d, *J* = 8.4 Hz, 1H), 7.38 – 7.33 (m, 2H), 7.28 –

7.23 (m, 2H), 6.53 – 6.49 (m, 1H), 6.30 (d, *J* = 2.2 Hz, 1H), 4.85 (s, 2H), 3.83 (s, 3H), 1.29 (s, 9H). ¹³**C-NMR:** δ 180.8, 168.3, 159.8, 153.5, 151.3, 131.9, 128.1, 127.4 (2C), 126.1 (2C), 111.6, 108.0, 98.4, 56.2, 43.8, 34.7, 31.5 (3C). **HRMS (EI):** calculated for C₂₀H₂₁NO₃⁺ [M]⁺ : 323.1516; found: 323.1537.

1-[4-(*tert*-Butyl)benzyl]-6-methylindoline-2,3-dione (1f)

Following general procedure A, 6-methylisatin (202 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 48h, gave **1f** as an orange solid (61% yield).

¹H-NMR: δ 7.49 (d, J = 7.6 Hz, 1H), 7.36 (m, 2H), 7.28 – 7.24 (m, 2H), 6.90 – 6.86 (m, 1H), 6.64 – 6.61 (m, 1H), 4.86 (s, 2H), 2.36 (s, 3H), 1.30 (s, 9H). ¹³C-NMR: δ 182.8, 159.1, 151.5, 151.3, 150.8, 131.9, 127.3 (2C), 126.1 (2C), 125.5, 124.6, 115.7, 111.8, 43.7, 34.7, 31.4, 23.2 (3C). HRMS (ESI): calculated for $C_{20}H_{22}NO_2^+$ [M+H]⁺: 308.1645; found: 308.1640.

1-[4-(tert-Butyl)benzyl]-5-methoxyindoline-2,3-dione (1g)

Following general procedure A, 5-methoxyisatin (222 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1g** as a dark red solid (78% yield).

¹**H-NMR:** δ 7.39 – 7.21 (m, 4H), 7.13 (d, *J* = 2.7 Hz, 1H), 7.04 (dd,

J = 8.6, 2.7 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 4.86 (s, 2H), 3.76 (s, 3H), 1.29 (s, 9H). ¹³**C-NMR:** 183.9, 158.5, 156.7, 151.3, 144.9, 131.7, 127.4 (2C), 126.1 (2C), 124.8, 118.3, 112.2, 109.7, 56.1, 43.9, 34.7, 31.4 (3C). **HRMS (EI):** calculated for C₂₀H₂₁NO₃⁺ [M]⁺: 323.1516; found: 323.1528.

1-[4-(*tert*-Butyl)benzyl]-5-fluoroindoline-2,3-dione (1h)

Following general procedure A, 5-fluoroisatin (207 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1h** as a red solid (65% yield).

¹H-NMR: δ 7.41 – 7.13 (m, 6H), 6.77 (dd, *J* = 8.6, 3.6 Hz, 1H), 4.89 (s, 2H), 1.29 (s, 9H). ¹³C-NMR: δ 182.9 (d, *J* = 2.3 Hz), 159.5 (d, *J* = 249.6 Hz), 158.2 (d, *J* = 1.5 Hz), 151.6, 147.1 (d, *J* = 2.2 Hz), 131.3, 127.4 (2C), 126.2 (2C), 124.8 (d, *J* = 24.1 Hz), 118.5 (d, *J* = 7.0 Hz), 112.6 (d, *J* = 17.5 Hz), 112.4, 44.0, 34.8, 31.4 (3C). ¹⁹F-NMR: δ -118.2 ppm. HRMS (EI): calculated for C₁₉H₁₈NO₂F⁺ [M]⁺ : 311.1316; found: 311.1306.

6-Bromo-1-[4-(*tert*-butyl)benzyl]indoline-2,3-dione (1i)

Following general procedure A, 6-bromoisatin (283 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1i** as an orange solid (70% yield).

¹H-NMR: δ 7.50 – 6.95 (m, 6H), 7.00 (s, 1H), 4.87 (s, 2H), 1.30 (s, 9H). ¹³C-NMR: δ 182.2, 158.2, 151.8, 151.6, 133.7, 131.2, 127.4 (2C), 127.2, 126.4, 126.3 (2C), 116.5, 114.7, 44.1, 34.8, 31.4 (3C). HRMS (EI): calculated for C₁₉H₁₈BrNO₂⁺ [M]⁺ : 371.0515; found: 371.0541.

5-Bromo-1-[4-(tert-butyl)benzyl]indoline-2,3-dione (1j)

Following general procedure A, 5-bromoisatin (283 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1***j* as an orange solid (82% yield).

¹H-NMR: δ 7.71 (d, J = 2.1 Hz, 1H), 7.59 (dd, J = 8.4, 2.1 Hz, 1H), 7.39 – 7.20 (m, 4H), 6.71 (d, J = 8.4 Hz, 1H), 4.88 (s, 2H), 1.29 (s, 9H). ¹³C-NMR: δ 182.4, 157.7, 151.7, 149.7, 140.6, 131.2, 128.3, 127.4 (2C), 126.2 (2C), 119.1, 116.9, 112.9, 44.1, 34.8, 31.4 (3C) ppm. HRMS (EI): calculated for C₁₉H₁₈BrNO₂⁺ [M]⁺ : 371.0515; found: 371.0505.

7-Bromo-1-[4-(*tert*-butyl)benzyl]indoline-2,3-dione (1k)

Following general procedure A, 7-bromoisatin (283 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1k** as an orange solid (61% yield).

¹H-NMR: δ 7.67 (dd, J = 8.1, 1.3 Hz, 1H), 7.61 (dd, J = 7.3, 1.3 Hz, 1H),
7.37 - 7.31 (m, 2H), 7.24 - 7.20 (m, 2H), 6.99 (dd, J = 8.1, 7.3 Hz, 1H), 5.41 (s, 2H), 1.29 (s, 9H).
¹³C-NMR: δ 182.6, 159.2, 150.8, 148.1, 144.3, 133.1, 126.6 (2C), 125.8 (2C), 125.3, 124.9, 121.1,

104.6, 44.5, 34.7, 31.5 (3C). **HRMS (EI):** calculated for C₁₉H₁₈BrNO₂⁺ [M]⁺ : 371.0515; found: 371.0502.

1-Benzyl-7-bromoindoline-2,3-dione (11)

Following general procedure A, 7-bromoisatin (283 mg, 1.25 mmol) and benzyl bromide (236 mg, 1.38 mmol) after 24h, gave **1l** as an orange solid (79% yield).

¹**H-NMR:** δ 7.66 – 7.57 (m, 2H), 7.35 – 7.22 (m, 5H), 6.98 (t, *J* = 7.7 Hz, 1H), 5.42 (s, 2H). ¹³**C-NMR:** δ 182.5, 159.2, 148.0, 144.3, 136.2, 128.9 (2C), 127.8, 126.6 (2C), 125.4, 124.9, 121.1, 104.6, 44.8. **HRMS (ESI):** calculated for C₁₅H₁₁NO₂Br⁺ [M+H]⁺: 315.9968; found: 315.9950.

1-[4-(tert-Butyl)benzyl]-6-(trifluoromethyl)indoline-2,3-dione (1m)

Following general procedure A, 6-trifluoromethylisatin (269 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1m** as a yellow solid (66% yield).

¹H-NMR: δ 7.71 (d, J = 7.7 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.30-7.25 (m, 2H), 7.04 (s, 1H), 4.93 (s, 2H), 1.30 (s, 9H). ¹³C-NMR: δ 182.7, 157.7, 151.9, 151.2, 139.1 (q, J = 32.9 Hz), 130.9, 127.6 (2C), 126.3 (2C), 125.8, 122.9 (q, J = 274.0 Hz), 121.0 (q, J = 4.0 Hz), 120.0, 108.1 (q, J = 3.9 Hz), 44.2, 34.8, 31.4 (3C). ¹⁹F-NMR: δ -63.9. HRMS (EI): calculated for

1-[4-(tert-Butyl)benzyl]-7-(trifluoromethyl)indoline-2,3-dione (1n)

C₂₀H₁₈F₃NO₂⁺ [M]⁺: 361.1284; found: 361.1275.

Following general procedure A, 7-trifluoromethylisatin (269 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1n** as an orange solid (68% yield).

¹**H-NMR:** δ 7.85 (d, *J* = 7.7 Hz, 2H), 7.34 – 7.07 (m, 5H), 5.18 (s, 2H), 1.27 (s, 9H). ¹³**C-NMR:** δ 181.6, 159.3, 150.4, 148.9, 135.8 (q, *J* = 6.0 Hz), 131.9, 128.9, 125.8 (2C), 125.5 (2C), 123.6, 122.5 (q, *J* = 271.8 Hz), 120.2, 114.9 (q, *J* = 33.7 Hz), 45.9 (q, *J* = 5.0 Hz), 34.5, 31.3 (3C). ¹⁹**F-NMR:** δ -55.6. **HRMS (EI):** calculated for $C_{20}H_{18}F_3NO_2^+$ [M]⁺: 361.1284; found: 361.1288.

1-Benzyl-7-(trifluoromethyl)indoline-2,3-dione (10)

Following general procedure A, 7-trifluoromethylisatin (269 mg, 1.25 mmol) and benzyl bromide (236 mg, 1.38 mmol) after 24h, gave **10** as a brown solid (76% yield).

¹H-NMR: δ 7.87 – 7.81 (m, 2H), 7.30 – 7.11 (m, 6H), 5.20 (s, 2H). ¹³C-NMR: δ 181.6, 159.4, 148.9 (q, J = 1.8 Hz), 136.0 (q, J = 6.0 Hz), 135.1 (q, J = 1.3 Hz), 129.1, 128.8 (2C), 127.6, 126.0 (2C), 123.8, 122.6 (q, J = 272.2 Hz), 120.4, 115.1 (q, J = 33.7 Hz). 46.3 (q, J = 5.0 Hz). ¹⁹F-NMR: δ -55.6. HRMS (ESI): calculated for C₁₆H₁₀NO₂NaF₃⁺ [M+Na]⁺: 328.0556; found: 328.0594.

1-[4-(tert-Butyl)benzyl]-4,7-dichloroindoline-2,3-dione (1p)

Following general procedure A, 4,7-dichloroisatin (270 mg, 1.25 mmol) and 1-(bromomethyl)-4-(tert-butyl)benzene (314 mg, 1.38 mmol) after 24h, gave **1p** as an orange solid (63% yield).

¹H-NMR: δ 7.38 (d, J = 8.9 Hz, 1H), 7.34 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 7.01 (d, J = 8.9 Hz, 1H), 5.36 (s, 2H), 1.29 (s, 9H). ¹³C-NMR: δ 179.5, 158.2, 151.1, 147.5, 140.8, 133.2, 132.9, 126.7 (2C), 126.6, 125.9 (2C), 117.2, 115.9, 45.1, 34.7, 31.5 (3C). HRMS (EI): calculated for C₁₉H₁₇ClNO₂⁺ [M-Cl]⁺: 326.0942; found: 326.0885.

1-Benzyl-4,7-dichloroindoline-2,3-dione (1q)

Following general procedure A, 4,7-dichloroisatin (270 mg, 1.25 mmol) and benzyl bromide (236 mg, 1.38 mmol) after 24h, gave **1q** as an orange solid (77% yield).

¹H-NMR: δ 7.40 – 7.23 (m, 6H), 7.02 (d, J = 8.7 Hz, 1H), 5.39 (s, 2H) ppm. ¹³C-NMR: δ 179.4, 158.2, 147.3, 140.8, 136.0, 133.2, 129.0 (2C), 128.0, 126.7 (2C), 126.7, 117.2, 115.9, 45.4 ppm. HRMS (ESI): calculated for C₁₅H₉NO₂Cl₂Na⁺ [M+Na]⁺ : 327.9903; found: 327.9870.

1-[4-(*tert*-Butyl)benzyl]-5-nitroindoline-2,3-dione (1r)⁵

It was prepared following the procedure described in the literature:⁵ 5-Nitroindoline-2,3-dione (384 mg, 2.0 mmol, 1.0 eq) was dissolved in 3.0 mL of DMF and the solution was cooled to 0°C. NaH (60% dispersion in mineral oil, 96 mg, 2.0 mmol, 1.0 eq.)

was added and the reaction mixture was stirred for 1h at 0°C. Then, 1-(bromomethyl)-4-(*tert*-butyl)benzene (455 mg, 2.0 mmol, 1.0 eq.) was added and the reaction was stirred for 24h at room temperature. After that, ethyl acetate (20 mL) and cold water (10 mL) were added and the organic layer was washed with water (3 x 10 mL), dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. **1r** was used without further purification (orange solid, 73% yield). ¹**H-NMR**: δ 8.46 (d, *J* = 2.4 Hz, 1H), 8.43 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.44 – 7.33 (m, 2H), 7.30 – 7.20 (m, 2H), 6.97 (d, *J* = 8.7 Hz, 1H), 4.97 (s, 2H), 1.30 (s, 9H). ¹³**C-NMR**: δ 181.4, 158.1, 155.1, 152.1, 144.4, 133.6, 130.5, 127.5 (2C), 126.4 (2C), 121.1, 117.5, 111.5, 44.5, 34.8, 31.4 (3C). HRMS (ESI): calculated for C₁₉H₁₉N₂O₄⁺ [M+H]⁺: 339.1339; found: 339.1389.

1-(Cyclopropylmethyl)-5-methylindoline-2,3-dione⁶ (1s)

It was prepared following a procedure described in the literature:⁶ 5-Methylisatin (202 mg, 1.25 mmol, 1.0 eq) and Cs_2CO_3 (652 mg, 2.00 mmol, 1.6 eq.) were dissolved in 20 mL of DMF. (Bromomethyl)cyclopropane (224 mg, 1.66 mmol, 1.3 eq.) was added and the reaction

mixture was stirred for 72h at room temperature. The solution was then diluted with ethyl acetate (30 mL) and washed with water (3 x 20 mL), dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. **1s** was used without further purification. (red solid, 77% yield). The ¹H-NMR in accordance with the literature. ¹H-NMR: δ 7.46 – 7.35 (m, 2H), 6.86 (d, *J* = 8.0 Hz, 1H), 3.59 (d, *J* = 7.0 Hz, 2H), 2.34 (s, 3H), 1.22 – 1.10 (m, 1H), 0.61 – 0.53 (m, 2H), 0.44 – 0.37 (m, 2H).

⁵ R. Romagnoli, P. Giovanni Baraldi, O. Cruz-Lopez, D. Preti, J. Bermejo and F. Estévez, *ChemMedChem* 2009, 4, 1668-1676.

⁶ X. Jia, Y. Zhu, Y. Yuan, X. Zhang, S. Lü, L. Zhang and L. Luo, ACS Catal. 2016, **6**, 6033-6036.

3. Synthesis and characterization data of silyl dienol ethers 2

(E)-(Buta-1,3-dien-1-yloxy)trimethylsilane (2a)⁷

It was prepared following a modified procedure described in the literature:⁷ To a two-neck round bottom flask charged with a condenser previously oven-dried was added a magnetic stirrer and anhydrous powder zinc chloride (204 mg, 1.5 mmol, 0.03 eq.) under nitrogen atmosphere. Then, Et₃N (10.1 mL, 73 mmol, 1.5 eq.) was added and the mixture was stirred at room temperature for 1h. A solution of crotonaldehyde (4.1 mL, 50 mmol, 1.0 eq.) in anhydrous diethylether (50 mL) and was added under nitrogen atmosphere. Then TMSCI (12.7 mL, 100 mmol, 2.0 eq.) was added dropwise and the reaction mixture was refluxed for 24h. The solvent was evaporated under reduced pressure and pentane was added. The mixture was filtered through latrobeads silica gel and the filtrate was concentrated under reduced pressure. Purification by Kugelrohr distillation (b.p. 40-45°C, 25 mmHg) gave **2a** as colorless liquid (82% yield). The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 6.54 (d, *J* = 11.9 Hz, 1H), 6.22 (dt, *J* = 16.9, 10.6 Hz, 1H), 5.72 (t, *J* = 11.4 Hz, 1H), 5.03 – 4.95 (m, 2H), 4.86 – 4.80 (m, 1H), 0.21 (s, 9H).

Trimethyl[(1-phenylbuta-1,3-dien-1-yl)oxy]silane (2b)⁸

It was prepared according to a modified procedure described in the literature:⁸ To a round bottom flask previously oven-dried was charged with a magnetic stirrer and the 1-phenyl-2-buten-1-one (1.02 g, 7 mmol, 1.0 eq.) under nitrogen atmosphere. Then, Et₃N (1,2 mL, 8.7 mmol, 1.3 eq.) and TMSCI (1.1 mL, 8.7 mmol, 1.3 eq.) were added. Next, a solution of NaI (1.3 g, 8.7 mmol, 1.3 eq.) in 25 mL of CH₃CN was added dropwise under nitrogen atmosphere. The reaction mixture was heated at 80°C and stirred at this temperature for 24h. After that, the mixture was cooled, 50 mL of pentane were added and the organic layer was washed with water (3x50 mL), dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. Purification

⁷ Y. Cui, H. Jiang, Z. Li, N. Wu, Z. Yang and J. Quan, *Org. Lett.*, 2009, **11**, 4628–4631.

⁸ S. E. Denmark and J. R. Heemstra, J. Org. Chem., 2007, **72**, 5668–5688.

by Kugelrohr distillation (b.p. 65-70°C, 25 mmHg) gave **2b** as a colorless liquid (78% yield, mixture of isomers *Z*:*E*, 60:40). The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 7.58 – 7.48 (m, 2H), 7.47 – 7.37 (m, 2H), 7.40 – 7.23 (m, 6H), 6.74 (dt, *J* = 17.0, 10.6 Hz, 1H, *Z*), 6.48 (dt, *J* = 16.8, 10.6 Hz, 1H, *E*), 6.06 (d, *J* = 10.8 Hz, 1H, *Z*), 5.78 (d, *J* = 11.1 Hz, 1H, *E*), 5.27 – 5.19 (m, 1H, *Z*), 5.14 – 5.07 (m, 1H, *E*), 5.05 – 5.00 (m, 1H, *Z*), 4.89 – 4.82 (m, 1H, *E*), 0.18 (s, 9H, *E*), 0.17 (s, 9H, *Z*) ppm.

(Z)-[(1-Methoxybuta-1,3-dien-1-yl)oxy]trimethylsilane (2c)⁹

It was prepared according to a modified procedure described in the literature: To a round bottom flask previously oven-dried was charged with a magnetic stirrer under nitrogen atmosphere. Then, anhydrous THF (10 mL) and destilled diisopropylamine (2.5 mL, 18 mmol, 1.8 eq.) were added and the solution was cooled to 0°C. Subsequently, *n*-BuLi (7.8 mL, 1.6M in hexanes, 12.5 mmol, 1.3 eq.) was added dropwise and the solution was stirred at 0°C for 15 minutes. Then, the mixture was cooled to -78°C and DMPU (1.5 mL, 12.5 mmol, 1.3 eq.), the methyl (*E*)-but-2-enoate (1.0 mL, 10 mmol, 1.0 eq.) and the TMSCI (1.9 mL, 15 mmol, 1.5 eq.) were added dropwise keeping the temperature at -78°C. The reaction mixture was warmed to room temperature and stirred for 2h. Next, the solvent was evaporated under reduced pressure. Pentane was added and the mixture was filtered through a short pad of celite and the filtrate was concentrated under reduced pressure. Purification by Kugelrohr distillation (b.p. 70-75°C, 25 mmHg) gave **2c** as a colorless liquid(64% yield). The ¹H-NMR is in accordance with the literature.

¹**H-NMR:** δ 6.48 (dt, *J* = 17.2, 10.4 Hz, 1H), 4.85 (dd, *J* = 17.2, 2.0 Hz, 1H), 4.60 (dd, *J* = 10.2, 2.2 Hz, 1H), 4.49 (d, *J* = 10.4 Hz, 1H), 3.58 (s, 3H), 0.19 (s, 9H) ppm.

⁹ M. Frias, R. Mas-Ballesté, S. Arias, C. Alvarado, J. Alemán, J. Am. Chem. Soc., **2017**, 139, 672–679.

4. Optimisation table

3d

3e

3f

Entry	R	3	H₂O	Solvent	T (≌C)	Conversion	ee
		(mol%)	(equiv.)			(%) ^b	(%) ^c
1	Н	3a (20)	3	DCM	r.t	100	30:70
2	Me	3a (20)	3	DCM	r.t	100	19:81
3	Bn	3a (20)	3	DCM	r.t	100	13:87
4	Bn	3a (10)	3	DCM	r.t	100	13:87
5	Bn	3b (10)	3	DCM	r.t	100	33:67
6	Bn	3c (10)	3	DCM	r.t	100	87:14
7	Bn	3d (10)	3	DCM	r.t	100	89:11
8	Bn	3e (10)	3	DCM	r.t	100	12:88
9	Bn	3f (10)	3	DCM	r.t	100	12:88
10	Bn	3d (10)	3	Dioxane	r.t	100	88:12
11	Bn	3d (10)	3	THF	r.t	100	91:2
12	Bn	3d (10)	3	TBME	r.t	100	87:13
13	Bn	3d (10)	3	DME	r.t	100	90:10
14	Bn	3d (10)	3	DCM	r.t	100	89:11
15	Bn	3d (10)	3	DCE	r.t	100	88:12
16	Bn	3d (10)	3	Toluene	r.t	100	85:15

17	Bn	3d (10)	3	Xylene	r.t	100	87:13
18	Bn	3d (10)	3	THF	0	100	92:8
19	Bn	3d (10)	3	THF	-30	100	93:7
20	Bn	3d (10)	3	THF	-78	35	93:7
21	Bn	3d (10)	0	THF	-30	5	-
22	Bn	3d (10)	1	THF	-30	57	92:8
23	Bn	3d (10)	6	THF	-30	56	92:8
24	-CH ₂ C ₆ H ₄₋ -	3d (10)	3	THF	-30	100	99:1
	p ^t Bu						

^a All the reactions were performed in 0.1 mmol with 0.3 mL of solvent . ^b Determined by ¹H NMR analysis of the crude. ^c Determined by SFC chromatography.

5. Synthesis and characterization data of 3-hydroxy-2oxoindolin-3-ylbut-2-enals 4

General procedure B: vinylogous Mukaiyama aldol reaction to isatins. Synthesis of 3-hydroxy-2-oxoindolin-3-ylbut-2-enals

Catalyst **3d** (6.0 mg, 0.01 mmol, 0.1 equiv) and the corresponding isatin **1** (0.1 mmol, 1.0 eq.) were dissolved in anhydrous tetrahydrofuran (0.3 mL) in an oven-dried vial. Then, after cooling the reaction to the corresponding temperature if needed, the silyl dienol ether **2** (0.3 mmol, 3.0 equiv.) and water (5 μ L, 3.0 equiv.) were added. The reaction was stirred for the indicated time. The mixture was then concentrated *in vacuo*. Finally, the crude mixture was purified by flash column chromatography using latrobeads silica gel and eluting with the solvent indicated in each case.

(R,E)-4-(3-Hydroxy-2-oxoindolin-3-yl)but-2-enal (4a)

Following general procedure B, isatin **1a** (14.7 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at room temperature, gave **4a** (64% yield) as a white solid. Eluent: cyclohexane: ethyl acetate; 3:1.

[α]²⁰_D= +1.5 (*c* 0.77, CHCl₃).

¹**H-NMR** (*d*⁶-DMSO): δ 10.33 (s, 1H), 9.45 (d, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.22 (td, *J* = 7.7, 1.3 Hz, 1H), 6.97 (td, *J* = 7.5, 1.1 Hz, 1H), 6.94 – 6.85 (m, 1H), 6.82 (d, *J* = 7.5 Hz, 1H), 6.22 (s,

1H), 6.03 (dd, J = 15.5, 7.9 Hz, 1H), 2.84 (dd, J = 14.2, 6.8 Hz, 1H, CH_2), 2.71 (dd, J = 14.2, 7.9 Hz, 1H, CH_2). ¹³C-NMR (d^6 -DMSO): δ 194.4, 178.2, 152.4, 141.3, 135.3, 131.2, 129.2, 124.2, 121.6, 109.7, 74.6, 40.6. HRMS (ESI)⁺: calculated for $C_{12}H_{10}NO_2^+$ [M-OH]⁺: 200.0706; found 200.0698. The enantiomeric ratio was determined by SFC using a Chiralpak IG-3 column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 2.0 mL/min], $\tau_{major} = 5.21$ min, $\tau_{minor} = 6.84$ min (e.r. = 70:30).

(R,E)-4-(3-Hydroxy-1-methyl-2-oxoindolin-3-yl)but-2-enal (4b)

Following general procedure B, isatin **1b** (16.1 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at room temperature, gave **4b** (74% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate; 3:1.

 $[\alpha]^{20}_{D}$ = +15.6 (*c* 0.65, CHCl₃).

¹**H-NMR**: δ 9.44 (d, *J* = 7.8 Hz, 1H), 7.42-7.32 (m, 2H), 7.17-7.06 (m, 1H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.85-6.76 (m, 1H), 6.11 (dd, *J* = 15.6, 7.8 Hz, 1H), 3.20 (s, 3H), 3.11-2.75 (m, 2H), 2.91 (bs, 1H, OH). ¹³**C-NMR**: δ 193.4, 177.1, 149.7, 143.1, 136.8, 130.4, 129.1, 124.2, 123.6, 108.9, 75.5, 41.6, 26.5. **HRMS (ESI)**: calculated for $C_{13}H_{12}NO_2^+$ [M-OH]⁺: 214.0863; found 214.0881. The enantiomeric ratio was determined by SFC using a Chiralpak IG-3 column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 2.0 mL/min], τ_{major} = 4.65 min, τ_{minor} = 4.93 min (**e.r.** = 82:18).

(R,E)-4-(1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (4c)

Following general procedure B, isatin 1c (23.7 mg, 0.1 mmol) and silyl dienol ether 2a (53 μ L, 0.3 mmol) after 24h at – 30 °C, gave 4c (74% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate; 3:1. [α]²⁰_D= -1.4 (*c* 0.71, CHCl₃).

¹H-NMR: 9.37 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.31 – 7.22 (m,6H), 7.09 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 6.67 (m, 1H), 6.11 (dd, J = 15.7, 7.8 Hz, 1H), 5.01 (d, J = 15.7 Hz, 1H, CH_2), 4.71 (d, J = 15.6 Hz, 1H, CH_2), 3.04 (dd, J = 13.8, 6.4 Hz, 1H, CH_2), 2.93 (dd, J = 13.8, 8.5 Hz, 1H, CH_2). ¹³C-RMN δ 193.4, 177.2, 149.4, 142.3, 136.8, 135.3, 130.4, 129.1 (2C), 129.0, 128.1, 127.5 (2C), 124.2, 123.7, 110.0, 75.6, 44.1, 41.8. HRMS (ESI): calculated for C₁₉H₁₈NO₃⁺ [M+H]⁺: 308.1281; found 308.1270. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 5.27$ min, $\tau_{minor} = 4.82$ min (e.r. = 93:7).

(*R*,*E*)-4-{1-[4-(*tert*-Butyl)benzyl]-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4d)

Following general procedure B, isatin **1d** (29.3 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at – 30 °C, gave **4d** (82% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate; 3:1. [α]²⁰_D= -8.4 (*c* 0.99, CHCl₃).

¹H-NMR: δ 9.36 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.3 Hz, 1H), 7.34 – 7.17 (m, 5H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 1H), 6.74 – 6.62 (m, 1H), 6.10 (dd, *J* = 15.7, 7.8 Hz, 1H), 4.98 (d, *J* = 15.5 Hz, 1H, *CH*₂), 4.68 (d, *J* = 15.5 Hz, 1H, *CH*₂), 3.15 (s, 1H, OH), 3.03 (dd, *J* = 13.9, 6.6 Hz, 1H, *CH*₂), 2.92 (dd, *J* = 13.9, 8.4 Hz, 1H, *CH*₂), 1.28 (s, 9H). ¹³C-RMN δ 193.4, 177.1, 151.1, 149.5, 142.5, 136.8, 132.3, 130.4, 129.0, 127.3 (2C), 125.9 (2C), 124.2, 123.6, 110.0, 75.6, 43.8, 41.9, 34.7, 31.4 (3C). HRMS (ESI): calculated for $C_{23}H_{25}NO_3Na^+$ [M+Na]*: 386.1727; found 386.1735. The enantiomeric ratio was determined by SFC using a Chiralpak IG-3 column [CO₂/MeOH 80:20, flow rate 2.0 mL/min] τ_{major} = 6.85 min, τ_{minor} = 12.76 min (e.r. = 99:1).

(*R*,*E*)-4-(1-(4-(*tert*-Butyl)benzyl)-3-hydroxy-6-methoxy-2-oxoindolin-3-yl)but-2-enal (4e)

Following general procedure B, isatin **1e** (32.3 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4e** (75% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1.

[α]²⁰_D= -18.8 (*c* 0.88, CHCl₃).

¹**H-NMR**: δ 9.36 (d, *J* = 7.8 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.18 (d, *J* = 8.3 Hz, 2H), 6.72 – 6.60 (m, 1H), 6.55 (dd, *J* = 8.2, 2.2 Hz, 1H), 6.38 (d, *J* = 2.2 Hz, 1H), 6.10 (dd, *J* = 15.6, 7.7 Hz, 1H), 4.95 (d, *J* = 15.6 Hz, 1H, CH₂), 4.64 (d, *J* = 15.4 Hz, 1H, CH₂), 3.76 (s, 3H), 3.01 (dd, *J* = 13.9, 6.4 Hz, 1H, CH₂), 2.90 (dd, *J* = 13.9, 8.5 Hz, 1H, CH₂), 1.28 (s, 9H). ¹³**C-RMN** δ 193.4, 177.5, 161.7, 151.1, 149.8, 144.0, 136.7, 132.3, 127.3 (2C), 126.0 (2C), 125.1, 120.9, 106.9, 98.2, 75.3, 55.7, 43.8, 41.9, 34.7, 31.4 (3C). **HRMS (ESI)**: calculated for $C_{24}H_{31}N_2O_4^+$ [M+NH₄]⁺: 411.2278; found 411.2284. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 5.22 \text{ min}$, $\tau_{minor} = 4.78 \text{ min}$ (**e.r.** = 93:7).

(R,E)-4-{1-[4-(tert-Butyl)benzyl]-3-hydroxy-2-oxo-6-methylindolin-3-yl}but-2-enal (4f)

Following general procedure B, isatin **1f** (30.7 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4f** (74% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1.

[α]²⁰_D= -16.8 (*c* 0.88, CHCl₃).

¹**H-NMR**: δ 9.36 (d, *J* = 7.8 Hz, 1H), 7.36 – 7.28 (m, 2H), 7.21 (t, *J* = 8.2 Hz, 3H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.74 – 6.65 (m, 1H), 6.64 (bs, 1H), 6.09 (dd, *J* = 15.7, 7.8 Hz, 1H), 4.96 (d, *J* = 15.5 Hz, 1H, *CH*₂), 4.66 (d, *J* = 15.5 Hz, 1H, *CH*₂), 3.02 (dd, *J* = 13.8, 6.6 Hz, 1H, *CH*₂), 2.98 (bs, 1H), 2.90 (dd, *J* = 13.8, 8.4 Hz, 1H, *CH*₂), 2.32 (s, 3H), 1.29 (s, 9H). ¹³**C-RMN**: δ 193.4, 177.3, 151.1, 149.7, 142.7, 140.8, 136.7, 132.5, 127.2 (2C), 126.1, 126.0 (2C), 124.1, 123.9, 110.7, 75.4, 43.7, 41.9, 34.7, 31.4 (3C), 22.1. **HRMS (ESI)**: calculated for $C_{24}H_{27}NO_3Na^+$ [M+Na]⁺: 400.1883; found 400.1863. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 5.11 \text{ min}$, $\tau_{minor} = 4.72 \text{ min}$ (**e.r.**= 96:4).

(R,E)-4-{1-[4-(tert-Butyl)benzyl]-3-hydroxy-5-methoxy-2-oxoindolin-3-yl}but-2-enal (4g)

Following general procedure B, isatin **1g** (32.3 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4g** (84% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 10:1.

[α]²⁰_D= +15.8 (*c* 1.07, CHCl₃).

¹**H-NMR**: δ 9.34 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.3 Hz, 2H), 6.99 (d, *J* = 2.5 Hz, 1H), 6.77 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.70 (d, *J* = 8.6 Hz, 1H), 6.68 – 6.59 (m, 1H), 6.10 (dd, *J* = 15.7, 7.8 Hz, 1H), 4.96 (d, *J* = 15.5 Hz, 1H, *CH*₂), 4.65 (d, *J* = 15.5 Hz, 1H, *CH*₂), 3.76 (s, 3H), 3.61 (s, 1H, *OH*), 3.02 (dd, *J* = 13.9, 6.7 Hz, 1H, *CH*₂), 2.93 (dd, *J* = 13.9, 8.4 Hz, 1H, *CH*₂), 1.28 (s, 9H). ¹³**C**-**RMN** δ 193.4, 177.0, 156.7, 151.1, 149.5, 136.8, 135.6, 132.4, 130.4, 127.3 (2C), 125.9 (2C), 114.7, 111.3, 110.6, 76.0, 55.9, 43.8, 41.9, 34.7, 31.4 (3C). **HRMS (ESI)**: calculated for $C_{24}H_{27}NO_4Na^+$ [M+Na]⁺: 416.1832; found 416.1806. The enantiomeric ratio was determined by SFC using a Chiralpak IB-3 column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 2.0 mL/min], $\tau_{major} = 5.09$ min, $\tau_{minor} = 4.82$ min (**e.r.** = 95:5).

(R,E)-4-{1-[4-(tert-Butyl)benzyl]-5-fluoro-3-hydroxy -2-oxoindolin-3-yl}but-2-enal (4h)

Following general procedure B, isatin **1h** (31.4 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4h** (74% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1.

[α]²⁰_D= -7.2 (*c* 1.01, CHCl₃).

¹**H-NMR**: δ 9.37 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 7.13 (dd, *J* = 7.5, 2.6 Hz, 1H), 6.96 (td, *J* = 8.8, 2.6 Hz, 1H), 6.73 (dd, *J* = 8.6, 4.0 Hz, 1H), 6.70 – 6.60 (m, 1H), 6.12 (dd, *J* = 15.7, 7.8 Hz, 1H), 4.97 (d, *J* = 15.5 Hz, 1H, CH₂), 4.67 (d, *J* = 15.5 Hz, 1H, CH₂), 3.02 (dd, *J* = 13.9, 6.7 Hz, 1H, CH₂), 2.93 (dd, *J* = 13.9, 8.4 Hz, 1H, CH₂), 1.28 (s, 9H). ¹³**C-RMN** δ 193.2, 176.9, 159.6 (d, *J* = 243.2 Hz), 151.3, 148.6, 138.3 (d, *J* = 2.2 Hz), 137.0, 131.9, 130.6 (d, *J* = 7.7 Hz), 127.2 (2C), 126.1 (2C), 116.7 (d, *J* = 23.5 Hz), 112.4 (d, *J* = 24.8 Hz), 110.8 (d, *J* = 7.9 Hz), 75.7, 43.9, 41.9, 34.7, 31.4 (3C). ¹⁹**F-RMN** δ 118.6. **HRMS (ESI)**: calculated for C₂₃H₂₈N₂O₃F⁺ [M+NH₄]⁺: 399.2078 found 399.2071. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 4.66 min$, $\tau_{minor} = 4.18 min$ (**e.r.** = 93:7).

(R,E)-4-{6-Bromo-1-[4-(tert-butyl)benzyl]-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4i)

Following general procedure B, isatin **1i** (37.2 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4i** (73% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1.

[α]²⁰_D= -5.2 (*c* 1.33, CHCl₃).

¹**H-NMR**: δ 9.38 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.26 – 7.22 (m, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 6.97 (s, 1H), 6.74 – 6.50 (m, 1H), 6.11 (dd, *J* = 16.1, 7.7 Hz, 1H), 4.96 (d, *J* = 15.5 Hz, 1H, *CH*₂), 4.64 (d, *J* = 15.5 Hz, 1H, *CH*₂), 3.00 (dd, *J* = 14.3, 5.9 Hz, 1H, *CH*₂), 2.89 (dd, *J* = 14.3, 8.6 Hz, 1H, *CH*₂), 1.30 (s, 9H). ¹³**C-RMN** δ 193.2, 176.8, 151.4, 148.6, 143.8, 137.1, 131.8, 127.9, 127.2 (2C), 126.5, 126.2 (2C), 125.5, 124.2, 113.4, 75.2, 43.9, 41.7, 34.7, 31.4 (3C). **HRMS (ESI)**: calculated for $C_{23}H_{24}NO_3BrNa^+$ [M+Na]⁺: 464.0832; found 464.0820. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 4.98$ min, $\tau_{minor} = 4.62$ min (**e.r.** = 94:6).

(R,E)-4-{5-Bromo-1-[4-(tert-butyl)benzyl]-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4j)

Following general procedure B, isatin **1j** (37.2 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4j** (84% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 16:1.

[α]²⁰_D= -12.4 (*c* 1.24, CHCl₃).

¹**H-NMR**: δ 9.35 (d, *J* = 7.7 Hz, 1H), 7.50 (d, *J* = 2.0 Hz, 1H), 7.38 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.33 – 7.24 (m, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.67 (d, *J* = 8.3 Hz, 1H), 6.65 – 6.54 (m, 1H), 6.12 (dd, *J* = 15.7, 7.7 Hz, 1H), 4.95 (d, *J* = 15.5 Hz, 1H, *CH*₂), 4.65 (d, *J* = 15.5 Hz, 1H, *CH*₂), 3.42 (s, 1H, *OH*), 3.06 – 2.89 (m, 2H), 1.28 (s, *J* = 6.2 Hz, 9H). ¹³**C-RMN** δ 193.2, 176.6, 151.4, 148.5, 141.4, 137.0, 133.2, 131.8, 131.1, 127.5, 127.2 (2C), 126.1 (2C), 116.4, 111.6, 75.6, 43.9, 41.8, 34.7, 31.4 (3C). **HRMS (ESI)**: calculated for $C_{23}H_{24}NO_3BrNa^+$ [M+Na]⁺: 464.0832; found 464.0852. The enantiomeric ratio was determined by SFC using a Chiralpak IB-3 column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 2.0 mL/min], τ_{major} = 5.18 min, τ_{minor} = 4.68 min (**e.r.** = 92:8).

(*R*,*E*)-4-(7-Bromo-1-(4-(*tert*-butyl)benzyl)-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (4k)

Following general procedure B, isatin **1k** (37.2mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4k** (79% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 19:1.

[α]²⁰_D= -5.2 (*c* 1.33, CHCl₃).

¹**H-NMR**: δ 9.40 (d, *J* = 7.8 Hz, 1H), 7.45 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.98 (dd, *J* = 8.2, 7.3 Hz, 1H), 6.74 – 6.56 (m, 1H), 6.10 (dd, *J* = 16.1, 7.6 Hz, 1H), 5.40 (d, *J* = 16.1 Hz, 1H, CH₂), 5.30 (d, *J* = 16.1 Hz, 1H, CH₂), 3.03 – 2.96 (m, 1H, CH₂), 2.96 (s, 1H), 2.95 – 2.86 (m, 1H, CH₂), 1.28 (s, 9H). ¹³**C-RMN** δ 193.2, 177.9, 150.6, 148.6, 140.1, 137.1, 136.4, 133.8, 132.3, 126.5 (2C), 125.8 (2C), 124.9, 123.4, 103.4, 74.7, 44.5, 42.1, 34.6, 31.4 (3C) . **HRMS (ESI)**: calculated for C₂₃H₂₈N₂O₃Br⁺ [M+NH₄]⁺: 459.1278; found 459.1324. The enantiomeric ratio was determined by SFC using a Chiralpak IC column: [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 5.48$ min, $\tau_{minor} = 4.90$ min (**e.r.** = 85:15).

(R,E)-4-(1-Benzyl-7-bromo-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (41)

Following general procedure B, isatin **1** (31.6 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at – 30 °C, gave **4** (83% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1. [α]²⁰_D= -55.5 (*c* 1.07, CHCl₃).

¹**H-NMR**: δ 9.40 (d, *J* = 7.8 Hz, 1H), 7.44 – 7.29 (m, 4H), 7.19 – 7.16 (m, 2H), 7.02 – 6.93 (m, 2H), 6.69 – 6.59 (m, 1H), 6.08 (dd, *J* = 15.6, 7.7 Hz, 1H), 5.40 (d, *J* = 16.4 Hz, 1H, *CH*₂), 5.30 (d, *J* = 16.4 Hz, 1H, *CH*₂), 2.99 (dd, *J* = 13.9, 7.0 Hz, 1H, *CH*₂), 2.91 (dd, *J* = 13.9, 8.3 Hz, 1H, *CH*₂). ¹³**C**-**RMN**: δ 193.3, 178.1, 148.6, 139.9, 137.1, 136.8, 136.3, 132.4, 128.8 (2C), 127.6, 126.6 (2C), 125.0, 123.4, 103.4, 74.8, 44.8, 42.1. **HRMS (ESI)**: calculated for C₁₉H₁₆NO₃BrNa⁺ [M+Na]⁺: 408.0206; found 408.0193. The enantiomeric ratio was determined by SFC using a Chiralpak IG-3 column: CO₂/MeOH 80:20, flow rate 2.0 mL/min, τ_{major} = 11.00 min, τ_{minor} = 8.08 min, **e.r.** = 93:7.

(*R,E*)-4-{1-[4-(*tert*-Butyl)benzyl]-3-hydroxy-2-oxo-6-(trifluoromethyl)indolin-3-yl}but-2-enal (4m)

Following general procedure B, isatin **1m** (36.1 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4m** (65% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1.

[α]²⁰_D= -9.4 (c 1.20, CHCl₃).

¹**H-NMR**: δ 9.39 (d, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 7.7 Hz, 1H), 7.42 – 7.31 (m, 3H), 7.20 (d, *J* = 8.2 Hz, 2H), 7.02 (s, 1H), 6.74 – 6.60 (m, 1H), 6.13 (dd, *J* = 15.6, 7.7 Hz, 1H), 5.01 (d, *J* = 15.5 Hz, 1H, *CH*₂), 4.71 (d, *J* = 15.5 Hz, 1H, *CH*₂), 3.32 (s, 1H), 3.04 (dd, *J* = 14.1, 6.4 Hz, 1H, *CH*₂), 2.91 (dd, *J* = 14.1, 8.5 Hz, 1H, *CH*₂), 1.29 (s, 9H). ¹³**C-RMN** δ 193.1, 176.9, 151.6, 148.2, 143.2, 137.2, 132.6 (q, *J* = 32.7 Hz), 132.5, 131.6, 127.3 (2C), 126.2 (2C), 124.6, 123.6 (q, *J* = 273.1 Hz), 120.7 (q, *J* = 4.1 Hz), 106.7 (q, *J* = 3.9 Hz), 75.3, 44.0, 41.7, 34.7, 31.4. ¹⁹**F-RMN**: -62.79. **HRMS (ESI)**: calculated for $C_{24}H_{28}N_2O_3F_3^+$ [M+NH₄]⁺: 449.2047; found 449.2040. The enantiomeric ratio was determined by SFC using a Chiralpak IC column: [CO₂/MeOH 95:5, flow rate 3.0 mL/min], τ_{major} = 6.92 min, τ_{minor} = 6.09 min (**e.r.** = 94:6).

(*R*,*E*)-4-(1-(4-(*tert*-Butyl)benzyl)-3-hydroxy-2-oxo-7-(trifluoromethyl)indolin-3-yl)but-2-enal (4n)

Following general procedure B, isatin **1n** (36.1 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4n** (73% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 15:1.

[α]²⁰_D= -22.3 (*c* 1.33, CHCl₃).

¹**H-NMR**: δ 9.44 (d, *J* = 7.8 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.29 (s, 2H), 7.22 (t, *J* = 7.9 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 2H), 6.77 – 6.64 (m, 1H), 6.09 (dd, *J* = 15.7, 7.8 Hz, 1H), 5.13 (s, 2H), 2.98 (dd, *J* = 14.1, 6.6 Hz, 1H, *CH*₂), 2.90 (dd, *J* = 14.1, 8.5 Hz, 1H, *CH*₂), 1.27 (s, 9H). ¹³**C-RMN**: δ 193.1, 178.7, 150.4, 148.3, 140.8, 137.2, 132.7, 132.0, 128.5 (q, *J* = 6.2 Hz), 127.9, 125.8 (q, *J* = 272.3 Hz), 125.8 (2C), 125.6 (2C), 123.2, 113.9 (q, *J* = 33.0 Hz), 73.5, 45.6, 42.0, 34.6, 31.4 (3C). ¹⁹**F-RMN**: -55.03. **HRMS (ESI)**: calculated for $C_{24}H_{24}NO_3F_3Na^+$ [M+Na]⁺: 454.1600; found 454.1549. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH 95:5, flow rate 3.0 mL/min], τ_{major} = 8.50 min, τ_{minor} = 7.17 min (**e.r.** = 85:15).

(*R*,*E*)-4-(1-Benzyl-3-hydroxy-2-oxo-7-(trifluoromethyl)indolin-3-yl)but-2-enal (40)

Following general procedure B, isatin **10** (30.5 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at – 30 °C, gave **4o** (72% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 19:1.

[α]²⁰_D= -44.4 (*c* 0.70, CHCl₃).

¹**H-NMR**: δ 9.47 (d, *J* = 7.8 Hz, 1H), 7.68 – 7.58 (m, 3H), 7.31 – 7.27 (m, 1H), 7.26 – 7.20 (m, 2H), 7.10 (d, *J* = 6.2 Hz, 2H), 6.76 – 6.65 (m, 1H), 6.11 (dd, *J* = 15.8, 7.8 Hz, 1H), 5.17 (s, 2H), 3.04 – 2.87 (m, 3H). ¹³**C-RMN**: δ 193.3, 178.8, 148.5, 140.6, 137.1, 135.7, 132.1, 128.6 (2C), 128.4 (q, *J* = 6.1 Hz), 128.0, 127.4, 125.9 (2C), 123.3, 123.2 (q, *J* = 272.1 Hz), 113.9 (q, *J* = 33.1 Hz), 73.6, 45.9 (q, *J* = 4.8 Hz), 41.9. ¹⁹**F-RMN**: -55.08. **HRMS (ESI)**: calculated for C₂₀H₁₆NO₃F₃Na⁺ [M+Na]⁺: 398.0974; found 398.0947. The enantiomeric ratio was determined by SFC using a Chiralpak IG-3 column [CO₂/MeOH 85:15, flow rate 2.0 mL/min], τ_{major} = 11.62 min, τ_{minor} = 13.95 min (**e.r.** = 93:7).

(*R*,*E*)-4-{1-[4-(*tert*-Butyl)benzyl]-4,7-dichloro-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4p)

Following general procedure B, isatin **1p** (36.2 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4p** (84% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1. [α]²⁰_D= -16.3 (*c* 1.00, CHCl₃).

¹**H-NMR**: δ 9.25 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.20 (d, *J* = 8.8 Hz, 1H), 7.15 (d, *J* = 8.3 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 1H), 6.42 – 6.32 (m, 1H), 6.08 (dd, *J* = 15.7, 7.7 Hz, 1H), 5.33 (d, *J* = 15.9 Hz, 1H, CH₂), 5.25 (d, *J* = 15.9 Hz, 1H, CH₂), 3.38 (dd, *J* = 13.6, 7.6 Hz, 1H, CH₂), 3.22 (dd, *J* = 13.6, 7.5 Hz, 1H, CH₂), 2.95 (bs, 1H, OH), 1.28 (s, 9H). ¹³**C-RMN** δ 193.1, 176.5, 150.9, 147.8, 140.4, 136.9, 134.0, 133.5, 130.5, 127.7, 126.7 (2C), 125.8 (2C), 125.5, 115.0, 76.0, 44.9, 39.2, 34.7, 31.4 (3C). **HRMS (ESI)**: calculated for $C_{23}H_{23}NO_3Cl_2Na^+$ [M+Na]⁺: 454.0947; found 454.0980. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], τ_{major} = 4.88 min, τ_{minor} = 4.46 min (**e.r.** = 80:20).

(*R*,*E*)-4-(1-Benzyl-4,7-dichloro-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (4q)

Following general procedure B, isatin **1q** (30.6 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 24h at -30 °C, gave **4q** (75% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1.

[α]²⁰_D= -13.8 (*c* 0.88, CHCl₃).

¹**H-NMR**: δ 9.29 (d, *J* = 7.6 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.21 – 7.17 (m, 3H), 7.00 (d, *J* = 8.8 Hz, 1H), 6.44 – 6.33 (m, 1H), 6.09 (dd, *J* = 15.6, 7.6 Hz, 1H), 5.36 (d, *J* = 16.0 Hz, 1H, *CH*₂), 5.28 (d, *J* = 16.0 Hz, 1H, *CH*₂), 3.40 (dd, *J* = 13.5, 7.5Hz, 1H, *CH*₂), 3.23 (dd, *J* = 13.5, 7.7Hz, 1H, *CH*₂), 3.14 (bs, 1H). ¹³**C-RMN**: δ 193.1, 176.6, 147.7, 140.2, 136.9, 136.5, 134.0, 130.5, 128.9 (2C), 127.8, 127.7, 126.7 (2C), 125.6, 115.0, 76.0, 45.2, 39.2. **HRMS (ESI)**: calculated for C₁₉H₁₅NO₃Cl₂Na⁺ [M+Na]⁺: 398.0321; found 398.0340. The enantiomeric ratio was determined by SFC using a Chiralpak IG-3 column [CO₂/MeOH 85:15, flow rate 2.0 mL/min], τ_{major} = 3.63 min, τ_{minor} = 2.88 min (**e.r.** = 90:10).

(*R*,*E*)-4-{1-[4-(*tert*-Butyl)benzyl]-3-hydroxy-5-nitro-2-oxoindolin-3-yl}but-2-enal (4r)

Following general procedure B, isatin **1r** (33.8 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 48h at -30 °C, gave **4r** (73% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 9:1). [α]²⁰_D= +32.5 (*c* 1.23, CHCl₃).

¹H-NMR: δ 9.36 (d, *J* = 7.7 Hz, 1H), 8.28 (d, *J* = 2.3 Hz, 1H), 8.23 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 1H), 6.68 – 6.57 (m, 1H), 6.14 (dd, *J* = 15.6, 7.7, 1.2 Hz, 1H), 5.03 (d, *J* = 15.5 Hz, 1H, CH₂), 4.75 (d, *J* = 15.5 Hz, 1H, CH₂), 3.53 (bs, 1H, *OH*), 3.09 – 2.98 (m, 2H), 1.28 (s, 9H). ¹³C-RMN δ 192.9, 177.3, 151.8, 147.9, 147.4, 144.1, 137.4, 131.1, 129.9, 127.4, 127.3 (2C), 126.3 (2C), 120.1, 109.8, 75.2, 44.2, 41.6, 34.8, 31.4 (3C). HRMS (ESI): calculated for C₂₃H₂₄N₂O₅Na⁺ [M+Na]⁺: 431.1577; found 431.1604. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 6.39$ min, $\tau_{minor} = 5.64$ min (e.r. = 94:6).

(R, E)-3-Hydroxy-1-methyl-3-(4-oxo-4-phenylbut-2-en-1-yl)indolin-2-one (4s)¹⁰

The Following general procedure B, isatin **1b** (23.7 mg, 0.1 mmol) and silyl dienol ether **2b** (59 μ L, 0.3 mmol) after 72h at room temperature, gave **4s** (74% yield) as a colorless oil. Eluent: cyclohexane: ethyl acetate; 3:1.

 $[\alpha]^{20}_{D}$ = +15.1 (c 0.61, CHCl₃). Lit.¹⁰ +32.9 (c 0.74, CHCl₃) for 92%

ee.

The ¹H-NMR is in accordance with the literature. ¹H-NMR: δ 7.85 – 7.79 (m, 1H), 7.59 – 7.51 (m, 1H), 7.47 – 7.30 (m, 4H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.93 – 6.72 (m, 3H), 3.19 (s, 3H), 3.01 (dd, *J* = 13.7, 6.0 Hz, 1H), 2.83 (dd, *J* = 13.6, 7.8 Hz, 1H). The enantiomeric ratio was determined by SFC using a Chiralpak IA column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], τ_{major} = **5.28 min**, τ_{minor} = **4.90 min** (**e.r.** = 85:15).

Major enantiomer is in accordance with HPLC chromatograms and optical rotation described in the literature.¹⁰ [ee determined by HPLC analysis; Chiralpak IA; Hexane/2-propanol = 92/8; flow rate 0.8 ml/min; 25 °C; 254 nm; retention time: τ_{major} = **41.9 min**, τ_{minor} = **38.7 min**]

¹⁰ B. Zhu, W. Zhang, R. Lee, Z. Han, W. Yang, D. Tan, K.- W. Huang and Z. Jiang, *Angew. Chem. Int. Ed.* 2013, **52**, 6666-6670.

(*R*,*E*)-1-Benzyl-3-hydroxy-3-(4-oxo-4-phenylbut-2-en-1-yl)indolin-2-one (4t)

Following general procedure B, isatin **1t** (23.7 mg, 0.1 mmol) and silyl dienol ether **2b** (59 μ L, 0.3 mmol) after 48h at room temperature, gave **4t** (74% yield) as a colorless oil. Eluent: dichloromethane: diethyl ether; 7:1.

[α]²⁰_D= -3.8 (*c* 1.08, CHCl₃).

¹**H-NMR**: δ 7.79 (d, *J* = 7.1 Hz, 2H), 7.56 – 7.50 (m, 1H), 7.47 – 7.36 (m, 4H), 7.27 – 7.18 (m, 5H), 7.13 – 7.07 (m, 1H), 6.93 (d, *J* = 15.4 Hz, 1H), 6.82 – 6.74 (m, 1H), 6.73 – 6.68 (m, 1H), 5.03 (d, *J* = 15.8 Hz, 1H, *CH*₂), 4.69 (d, *J* = 15.8 Hz, 1H, *CH*₂), 3.11 (dd, *J* = 13.4, 6.4 Hz, 1H, *CH*₂), 2.97 (dd, *J* = 13.4, 8.6 Hz, 1H, *CH*₂). ¹³**C-RMN** δ 190.0, 177.5, 142.5, 140.4, 137.5, 135.2, 133.0, 130.6, 130.2, 129.2, 129.0 (2C), 128.7 (2C), 128.7 (2C), 127.8, 127.2 (2C), 124.4, 123.6, 110.0, 76.1, 44.1, 41.9 ppm. **HRMS (ESI)**: calculated for C₂₅H₂₁NO₃Na⁺ [M+Na]⁺: 406.1414; found 406.1438. The enantiomeric ratio was determined by SFC using a Chiralpak IA column [CO₂/MeOH 85:15, flow rate 3.0 mL/min], τ_{major} = 9.91 min, τ_{minor} = 9.04 min (**e.r.** = 80:20).

Methyl (R,E)-4-(1-benzyl-3-hydroxy-2-oxoindolin-3-yl)but-2-enoate (4u)

The Following general procedure B, isatin **1c** (23.7 mg, 0.1 mmol) and silyl dienol ether **2c** (65 μ L, 0.3 mmol) after 24h at room temperature, gave **4u** (74% yield) as a colorless oil. Eluent: Cyclohexane: ethyl acetate; 3:1.

¹**H-NMR**: δ 7.38 (d, *J* = 7.3 Hz, 1H), 7.33 – 7.28 (m, 4H), 7.23 – 7.20 (m, 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.85 – 6.74 (m, 1H), 6.72 (d, *J* = 7.5 Hz, 1H), 5.89 (d, *J* = 15.6 Hz, 1H), 5.04 (d, *J* = 15.7 Hz, 1H, *CH*₂), 4.73 (d, *J* = 15.7 Hz, 1H, *CH*₂), 3.70 (s, 3H), 2.96 (dd, *J* = 13.6, 6.6 Hz, 1H, *CH*₂), 2.85 – 2.74 (m, 2H). ¹³**C-RMN** δ 177.3, 166.3, 142.5, 140.8, 135.4, 130.3, 129.1, 129.0 (2C), 127.9, 127.4 (2C), 126.0, 124.4, 123.6, 110.0, 75.8, 51.7, 44.1, 41.4. **HRMS (ESI)**: calculated for C₂₀H₂₀NO₄ [M+H]⁺: 338.1387; found 338.1420. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], τ_{major} = 4.69 min, τ_{minor} = 5.35 min (**e.r.** = 50:50).

(R,E)-4-[1-(Cyclopropylmethyl)-3-hydroxy-5-methyl-2-oxoindolin-3-yl]but-2-enal (4v)

Following general procedure B, isatin **1s** (21.5 mg, 0.1 mmol) and silyl dienol ether **2a** (53 μ L, 0.3 mmol) after 72h at room temperature, gave **4v** (75% yield) as a colorless oil. Eluent: dichloromethane: ethyl acetate; 1:1.

[α]²⁰_D= -11.0 (*c* 0.99, CHCl₃).

¹**H-NMR**: δ 9.43 (d, *J* = 7.8 Hz, 1H), 7.23 – 7.10 (m, 2H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.73 – 6.62 (m, 1H), 6.10 (dd, *J* = 15.6, 7.7 Hz, 1H), 3.60 (dd, *J* = 14.5, 7.2 Hz, 1H, *CH*₂), 3.50 (dd, *J* = 14.5, 6.6 Hz, 1H, *CH*₂), 3.03 – 2.65 (m, 3H), 2.35 (s, 3H), 1.19 – 1.06 (m, 1H), 0.59 – 0.47 (m, 2H), 0.39 – 0.25 (m, 2H). ¹³**C-RMN** δ 193.4, 176.8, 149.7, 140.4, 136.7, 133.1, 130.6, 129.0, 125.0, 109.1, 75.7, 44.6, 41.9, 29.9, 21.2, 9.7, 4.1, 4.0 ppm. **HRMS (ESI)**: calculated for $C_{17}H_{18}NO_2$ [M-OH]⁺: 268.1332; found 268.1330. The enantiomeric ratio was determined by SFC using a Chiralpak IC column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], τ_{major} = 5.28 min, τ_{minor} = 4.90 min (**e.r.** = 97:3).

(*R*,*E*)-1-(Cyclopropylmethyl)-3-hydroxy-3-(4-hydroxybutyl)-5-methylindolin-2-one (6)

OH Isatin **4v** (19 mg, 0.066 mmol, 1.0 eq.) was dissolved in methanol (1.0 mL) in an oven-dried vial. After cooling the reaction to 0 °C, sodium borohydride (51 mg, 1.33 mmol, 20 equiv.) was added and the reaction was stirred at 0 °C for 15 minutes and 5h at room temperature. The mixture was then extracted with EtOAc

(3x5 mL), washed with water (3x5 mL), dried over MgSO₄, filtered and the solvent was evaporated under reduced pressure. The final product was used without further purification. The crude was then dissolved in methanol (4.0 mL) and added to an oven-dried vial containing

20 mol% Pd/C (10% w/w). The reaction mixture was purged with a balloon of H_2 and stirred for 90 minutes at room temperature under hydrogen atmosphere. The crude was filtered through a short pad of celite and the solvent was evaporated under reduced pressure. The product was obtained as a colorless oil (71% yield) after purification by flash chromatography (dichloromethane: ethyl acetate; 1:1).

[α]²⁰_D= -17.1 (*c* 0.77, CHCl₃).

¹**H-NMR:** δ 7.20 (s, 1H), 7.12 (d, *J* = 7.9 Hz, 1H), 6.82 (d, *J* = 7.9 Hz, 1H), 3.67 – 3.44 (m, 4H), 2.71 (s, 1H, *OH*), 2.35 (s, 3H), 2.05 – 1.91 (m, 2H), 1.58 – 1.45 (m, 2H), 1.22 – 1.12 (m, 2H), 0.91 – 0.78 (m, 1H), 0.57 – 0.45 (m, 2H), 0.41 – 0.33 (m, 2H). ¹³**C-RMN** δ 178.2, 140.8, 132.8, 130.1, 130.0, 124.9, 108.8, 62.6, 44.5, 38.6, 32.7, 21.3, 19.7, 9.8, 4.1, 4.0. **HRMS (ESI)**: calculated for $C_{17}H_{24}NO_3^+$ [M+H]⁺: 290.1751; found 290.1751. The enantiomeric ratio was determined by SFC using a Chiralpak IA column [CO₂/MeOH from 95:5 to 60:40 in 8 min, flow rate 3.0 mL/min], $\tau_{major} = 3.56 \text{ min}$, $\tau_{minor} = 3.81 \text{ min}$ (**e.r.** = 97:3).

6. Spectroscopical data

1-[4-(tert-Butyl)benzyl]indoline-2,3-dione (1d)

1-[4-(tert-Butyl)benzyl]-6-methoxyindoline-2,3-dione (1e)

1-[4-(tert-Butyl)benzyl]-6-methylindoline-2,3-dione (1f)

1-[4-(tert-Butyl)benzyl]-5-methoxyindoline-2,3-dione (1g)

6-Bromo-1-[4-(tert-butyl)benzyl]indoline-2,3-dione (1i)

5-Bromo-1-[4-(tert-butyl)benzyl]indoline-2,3-dione (1j)

7-Bromo-1-[4-(tert-butyl)benzyl]indoline-2,3-dione (1k)

1-[4-(tert-Butyl)benzyl]-6-(trifluoromethyl)indoline-2,3-dione (1m)

16	- 250000
	- 240000
	- 230000
	- 220000
	210000
	- 200000
	- 190000
	- 180000
	- 170000
	- 160000
	- 150000
	- 140000
	- 130000
	- 120000
	- 110000
	- 100000
	- 90000
	- 80000
	- 70000
	- 60000
	- 50000
	- 40000
	- 30000
	- 20000
	- 10000
	0
	10000
	20000
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)	

1-[4-(tert-Butyl)benzyl]-4,7-dichloroindoline-2,3-dione (1p)

(R,E)-4-(3-Hydroxy-2-oxoindolin-3-yl)but-2-enal (4a)

 #
 Time
 Type
 Area
 Height
 Width
 Area%
 Symmetry

 1
 5.214
 88
 14473.7
 2646.7
 0.0858
 69.277
 0.646

 2
 6.841
 80
 6418.8
 804.9
 0.121
 30.723
 0.736

(R,E)-4-(3-Hydroxy-1-methyl-2-oxoindolin-3-yl)but-2-enal (4b)

(R,E)-4-(1-Benzyl-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (4c)

 [#] Time
 Type
 Area
 Height
 Width
 Area%
 Symmetry

 1
 4.816
 B8
 723.5
 154.7
 0.0726
 6.508
 0.835

(R,E)-4-{1-[4-(tert-Butyl)benzyl]-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4d)

(R,E)-4-(1-(4-(tert-Butyl)benzyl)-3-hydroxy-6-methoxy-2-oxoindolin-3-yl)but-2-enal (4e)

(*R*,*E*)-4-{1-[4-(*tert-B*utyl)benzyl]-3-hydroxy-2-oxo-6-methylindolin-3-yl}but-2-enal (4f)

 #
 Time
 Type
 Area
 Height
 Width
 Area%s
 Symmetry

 1
 4.7/2
 MM
 338.2
 61.9
 0.0857
 4.015
 0.777

 2
 5.11
 68
 7605.8
 1410.8
 0.0829
 95.965
 0.84

(R,E)-4-{1-[4-(tert-Butyl)benzyl]-3-hydroxy-5-methoxy-2-oxoindolin-3-yl}but-2-enal (4g)

#	Time	Area	Height	Width	Area%	Symmetry
1	4.804	6085.6	1172.8	0.0785	46.095	0.571
2	5.195	7116.7	1039.9	0.0988	53.905	0.52

(*R*,*E*)-4-{1-[4-(*tert*-Butyl)benzyl]-5-fluoro-3-hydroxy -2-oxoindolin-3-yl}but-2-enal (4h)

(R,E)-4-{6-Bromo-1-[4-(tert-butyl)benzyl]-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4i)

(R,E)-4-{5-Bromo-1-[4-(tert-butyl)benzyl]-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4j)

(*R*,*E*)-4-(7-Bromo-1-(4-(*tert*-butyl)benzyl)-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (4k)

#	Time	Area	Height	Width	Area%	Symmetry
1	4.873	6446.5	894.7	0.1061	50.132	0.563
2	5.455	6412.6	822	0.116	49.868	0.632

(R,E)-4-(1-Benzyl-7-bromo-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (41)

Time Type Area Height Width Area% Symmetry 1 8.059 88 525.3 32 0.2466 40.719 0.634 2 11.016 00 764.7 36.3 0.3075 59.281 0.698

 #
 Time
 Type
 Area
 Height
 Width
 Area%
 Symmetry

 1
 8.076
 86
 202.3
 12.5
 0.2408
 7.848
 0.671

 2
 11.006
 88
 2375.5
 113.2
 0.3209
 92.152
 0.702

(*R*,*E*)-4-{1-[4-(*tert*-Butyl)benzyl]-3-hydroxy-2-oxo-6-(trifluoromethyl)indolin-3-yl}but-2-enal

(*R*,*E*)-4-(1-(4-(*tert*-Butyl)benzyl)-3-hydroxy-2-oxo-7-(trifluoromethyl)indolin-3-yl)but-2-enal (4n)

(R,E)-4-(1-Benzyl-3-hydroxy-2-oxo-7-(trifluoromethyl)indolin-3-yl)but-2-enal (40)

(R,E)-4-{1-[4-(tert-Butyl)benzyl]-4,7-dichloro-3-hydroxy-2-oxoindolin-3-yl}but-2-enal (4p)

Time Type Area Height Width Area% Symmetry 1 4.449 00 5530.7 1281.9 0.0671 51.377 0.841 2 4.877 95 5234.3 12077.8 0.0736 48.623 0.872

 [#] Time
 Type
 Area
 Height
 Width
 Area%
 Symmetry

 1
 4.453
 88
 1728.8
 387.4
 0.0681
 20.338
 0.662

 2
 4.885
 88
 6567.6
 1354.6
 0.0746
 79.162
 0.84

(R,E)-4-(1-Benzyl-4,7-dichloro-3-hydroxy-2-oxoindolin-3-yl)but-2-enal (4q)

Time Type Area Height Width Area% Symmetry 1 2.873 08 341.1 58.8 0.0096 49.321 0.7 2 3.63 09 350.4 45.7 0.1174 50.679 0.6666

 #
 Time
 Type
 Area
 Height
 Width
 Area%
 Symmetry

 1
 2.879
 68
 62
 10.3
 0.072
 9.662
 0.737

 2
 3.631
 80
 566.4
 73.3
 0.1162
 90.138
 0.667

(*R*,*E*)-4-{1-[4-(*tert*-Butyl)benzyl]-3-hydroxy-5-nitro-2-oxoindolin-3-yl}but-2-enal (4r)

Time Type Area Height Width Area% Symmetry 1 5.614 B8 1882.3 362.1 0.0806 45.352 0.867 2 6.372 PM 2268.1 387.7 0.0975 54.648 0.853

(R,E)-1-Benzyl-3-hydroxy-3-(4-oxo-4-phenylbut-2-en-1-yl)indolin-2-one (4t)

Methyl (R,E)-4-(1-benzyl-3-hydroxy-2-oxoindolin-3-yl)but-2-enoate (4u)

Time Type Area Height Width Area% Symmetry 1 4.672 88 16091.5 2774.1 0.0937 47.892 0.735 2 5.333 08 17508.1 2766.8 0.1038 52.108 0.737

(*R*,*E*)-4-[1-(Cyclopropylmethyl)-3-hydroxy-5-methyl-2-oxoindolin-3-yl]but-2-enal (4v)

(R,E)-1-(Cyclopropylmethyl)-3-hydroxy-3-(4-hydroxybutyl)-5-methylindolin-2-one (6)

