Terminal alkyne insertion into a thiolate-bridged dirhodium hydride complex derived from heterolytic

 cleavage of $\mathbf{H}_{\mathbf{2}}$
${ }^{a}$ State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China.
${ }^{b}$ Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China.
*E-mail: qujp@ dlut.edu.cn
yangdw@dlut.edu.cn

Table of Contents

I. General Materials and Methods S3
II. Experimental Procedures and Analytical Data S3
III. References S10
IV. X-ray Crystallographic Data. S11
V. NMR Spectra S26
VI. ESI-HRMS S40
VII. IR Spectra S53

I. General Materials and Methods

General Consideration. All manipulations were routinely carried out under an argon atmosphere by standard Schlenk-line techniques unless otherwise specified or Mikrouna argon-filled glove box. All solvents were dried and distilled over an appropriate drying agent under argon or nitrogen. $\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{Cl})_{3} \mathrm{RhCp}^{*}\right]\left[\mathrm{BF}_{4}\right],{ }^{1}$ $[\mathrm{Cp} * \operatorname{Ir}(t-\mathrm{Cl})(\mu-\mathrm{Cl})]_{2},{ }^{2}$ benzene-1,2-dithiol $(\mathrm{bdt})^{3}$ and $[\mathrm{Cp} * \operatorname{Ir}(\mathrm{bdt})]^{4}$ were prepared according to the literature. $\mathrm{NaBPh}_{4}, \mathrm{HBF}_{4} \bullet \mathrm{Et}_{2} \mathrm{O}, \mathrm{CoCp}_{2}, \mathrm{MeONa}$, ferrocenium hexafluorophosphate $\left(\mathrm{Fc} \cdot \mathrm{PF}_{6}\right)$ and terminal alkynes were commercial available and used without further purification.

Spectroscopic Measurements. The NMR spectra were recorded on a Brüker 400 Ultra Shield spectrometer. The chemical shifts (δ) are given in parts per million relative to $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (5.32 ppm for ${ }^{1} \mathrm{H} ; 53.84 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$). Infrared spectra were recorded on an NEXVSTM FT-IR spectrometer. ESI-HRMS were recorded on a HPLC/Q-Tof micro spectrometer, except that $\mathbf{D - 5}\left[\mathbf{P F}_{6}\right]$ and $\mathbf{D - 6}\left[\mathbf{P F}_{6}\right]$ was recorded on LTQ Orbitrap XL. Elemental analyses were performed on a Vario EL analyzer. GC was performed on an Agilent 7890B spectrometer.

X-ray Crystallography Procedures. Single-crystal X-ray diffraction studies were carried out on a Brüker SMART APEX CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda=0.71073 \AA$). Empirical absorption corrections were performed using the SADABS program, ${ }^{5}$ Structures were solved by direct methods and refined by full-matrix least-squares based on all data using SHELX $97 .{ }^{6}$ Anisotropic thermal displacement coefficients were determined for all non-hydrogen atoms. Hydrogen atoms were placed at idealized positions and refined with fixed isotropic displacement parameters. Atoms C32, C33 of $\mathbf{7 c}\left[\mathbf{B P h} \mathbf{h}_{4}\right]$ were disordered and restrained during the refining of the structure. Disordered atomic positions were split and refined using one occupancy parameter per disordered group.

II. Experimental Procedures and Analytical Data

Synthesis of $\left[\mathbf{C p} * \mathbf{R h}\left(\mu-\boldsymbol{\eta}^{2}: \boldsymbol{\eta}^{2}-\mathrm{bdt}\right)(\mu-\mathrm{Cl}) \mathbf{R h C p} *\right]\left[\mathrm{BF}_{4}\right]\left(\mathbf{1}\left[\mathrm{BF}_{4}\right]\right)$.

Complex $\left[\mathrm{Cp} * \mathrm{Rh}(\mu-\mathrm{Cl})_{3} \mathrm{RhCp}^{*}\right]\left[\mathrm{BF}_{4}\right](405 \mathrm{mg}, 0.61 \mathrm{mmol})$ was added to MeOH $(100 \mathrm{~mL})$ followed by a suspension of disodium benzene-1,2-dithiolate ($\mathrm{Na}_{2} \mathrm{bdt}$) in $\mathrm{MeOH}(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, which was prepared by the reaction of MeONa (66 mg ,
1.22 mmol) and benzene-1,2-dithiol ($86 \mathrm{mg}, 0.61 \mathrm{mmol}$) in MeOH at room temperature. The mixture was stirred overnight as it warmed to room temperature. The resulting dark red suspension was evaporated, and then the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). The solution was evaporated to dryness in reduced pressure and the residue was washed by diethyl ether. A dark red powder of $\mathbf{1}\left[\mathbf{B F}_{4}\right](317 \mathrm{mg}$, $0.43 \mathrm{mmol}, 70 \%$) was obtained after the volatiles were removed in vacuum. Crystals suitable for X -ray diffraction were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with n-hexane at room temperature.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 7.18\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.4 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}\right.$, bdt- H), $6.71\left(\mathrm{dd}, 2 \mathrm{H}, J_{l}=5.4 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}\right.$, bdt- H), $1.52\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 152.64$ (bdt-C), 128.43 (bdt- CH), 127.01 (bdt- CH), 97.83 $\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 8.87\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for $\mathbf{1}^{+} 650.9901$; Found 650.9912. Anal. Calcd. For $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{ClBF}_{4}$: C, 42.27; H, 4.64. Found: C, 42.22; H, 4.97.

Synthesis of $\left[\mathbf{C p} * \mathbf{R h}\left(\mu-\eta^{2}: \eta^{2}-\right.\right.$ bdt $) \mathbf{R h C p} *$] (2).

To a stirred solution of $\mathbf{1}\left[\mathbf{B F} \mathbf{F}_{4}\right](406 \mathrm{mg}, 0.55 \mathrm{mmol})$ in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2 equiv. of CoCp_{2}, followed by stirring at room temperature for 12 h . Volatiles were removed in vacuum, and the crude product was extracted with n-hexane ($3 \times 100 \mathrm{~mL}$). A dark-red powder of $\mathbf{2}$ ($259 \mathrm{mg}, 0.42 \mathrm{mmol}, 76 \%$) were achieved after drying in reduced pressure. Crystals of 2 suitable for the X-ray diffraction experiment were grown from saturated n-hexane solution at $-30^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 6.91$ (s, 2H, bdt- H), 6.39 (s, 2H, bdt- H), 1.87 (s, $30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 154.58$ (bdt-C), 126.27 (bdt- CH), $123.75($ bdt- CH$), 92.79\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 11.23\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Rh}_{2} \mathrm{~S}_{2}$: C, 50.65 ; H, 5.56; Found: C, 50.56 ; H, 5.80.

Synthesis of $\left[\mathbf{C p} * \operatorname{Ir}\left(\mu-\eta^{2}: \eta^{2}-\mathrm{bdt}\right)(\mu-\mathrm{Cl}) \operatorname{IrCp}{ }^{*}\right]\left[\mathrm{BPh}_{4}\right]\left(3\left[\mathrm{BPh}_{4}\right]\right)$.

Complexes $[\mathrm{Cp} * \operatorname{Ir}(t-\mathrm{Cl})(\mu-\mathrm{Cl})]_{2}(231 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $[\mathrm{Cp} * \operatorname{Ir}(\mathrm{bdt})](271 \mathrm{mg}, 0.58$ $\mathrm{mmol})$ were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ followed by $\mathrm{NaBPh}_{4}(200 \mathrm{mg}, 0.58 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred as it warmed to room temperature. The resulting dark orange suspension was filtered. The filtrate was evaporated to dryness in reduced pressure and the residue was washed by diethyl ether. A yellow powder of $\mathbf{3}\left[\mathbf{B P h}_{4}\right]$ ($460 \mathrm{mg}, 0.4 \mathrm{mmol}, 69 \%$) was obtained after the volatiles were removed in vacuum. Crystals suitable for X-ray diffraction were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered
with n-hexane at room temperature.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 7.31\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{BPh}_{4}-H\right), 7.22(\mathrm{~s}, 2 \mathrm{H}$, bdt- H), 7.02 $\left(\mathrm{t}, J_{l}=6.6 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{BPh}_{4}-H\right), 6.87\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{BPh}_{4}-H\right), 6.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{bdt}-H), 1.50(\mathrm{~s}, 30 \mathrm{H}$, $\mathrm{Cp}^{*}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 152.37$ (bdt-C), $136.31\left(\mathrm{BPh}_{4}-\mathrm{C}\right)$, 127.61 (bdt- CH) 126.72 (bdt- CH$), 125.98\left(\mathrm{BPh}_{4}-\mathrm{CH}\right), 122.07\left(\mathrm{BPh}_{4}-\mathrm{CH}\right), 90.71$ $\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 8.75\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for 3^{+}831.1033; Found 831.1060. Anal. Calcd. For $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{Ir}_{2} \mathrm{~S}_{2} \mathrm{ClB}$: C, 52.23 ; H, 4.73. Found: C, 52.02; H, 4.60.

Synthesis of [Cp**Ir($\mu-\boldsymbol{\eta}^{2}: \boldsymbol{\eta}^{2}$-bdt)IrCp*] (4).

To a stirred solution of $\mathbf{3}\left[\mathbf{B P h}_{4}\right]$ ($471 \mathrm{mg}, 0.41 \mathrm{mmol}$) in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2 equiv. of CoCp_{2}, followed by stirring at room temperature for 12 h . Volatiles were removed in vacuum, and the crude product was extracted with n-hexane (3×100 $\mathrm{mL})$. A brown powder of $\mathbf{4}(192 \mathrm{mg}, 0.24 \mathrm{mmol}, 58 \%)$ were achieved after drying in reduced pressure. Crystals of 4 suitable for the X-ray diffraction experiment were grown from saturated n-hexane solution at $-30^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 7.08\left(\mathrm{dd}, 2 \mathrm{H}, J_{1}=5.2 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}\right.$, bdt- H), $6.38\left(\mathrm{dd}, 2 \mathrm{H}, J_{l}=5.2 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}\right.$, bdt- H) , $1.99\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 154.54$ (bdt-C), 124.72 (bdt- CH), 124.38 (bdt- CH), 85.88 $\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 11.21\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Ir}_{2} \mathrm{~S}_{2}$: C, 39.27; H, 4.31; Found: C, 39.33; H, 4.10.

Synthesis of $\left[\mathbf{C p} * \mathbf{M}\left(\mu-\eta^{2}: \eta^{2}-\mathrm{bdt}\right)(\mu-\mathrm{H}) \mathrm{MCp}^{*}\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{M}=\mathrm{Rh}, \mathbf{5}\left[\mathrm{PF}_{6}\right] ; \mathrm{M}=\mathrm{Ir}\right.$, 6[PF6]).

To a stirred solution of $\mathbf{2}(529 \mathrm{mg}, 0.86 \mathrm{mmol})$ or $\mathbf{4}(477 \mathrm{mg}, 0.60 \mathrm{mmol})$ and 1 equiv. of $\mathrm{Fc} \cdot \mathrm{PF}_{6}$ in 200 mL of THF was bubbled 1 atm of H_{2}, followed by stirring at $60^{\circ} \mathrm{C}$ for 12 h under $\mathrm{H}_{2}(1 \mathrm{~atm})$. The resulting suspension was filtrated at room temperature, the filtrate was evaporated to dryness in reduced pressure and the residue was washed by diethyl ether and dried in reduced pressure. Crystals suitable for X-ray diffraction were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with n-hexane at room temperature.

Complex 5[PF ${ }_{6}$ ($229 \mathrm{mg}, 0.30 \mathrm{mmol}, 35 \%$), an orange powder, ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right): \delta 7.22$ (dd, $2 \mathrm{H}, J_{I}=5.4 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}$, bdt- H), $6.71\left(\mathrm{dd}, 2 \mathrm{H}, J_{l}=5.4\right.$ $\mathrm{Hz}, J_{2}=3.2 \mathrm{~Hz}$, bdt-H), $1.94\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right),-9.84(\mathrm{t}, 1 \mathrm{H}, J=26 \mathrm{~Hz}, \mu-H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 149.15$ (bdt-C), 128.55 (bdt- CH), 126.61 (bdt- CH),
$100.95\left(\mathrm{Cp}^{*}-C\right), 10.75\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for 5^{+}617.0291; Found 617.0285 Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{PF}_{6}$: C, 40.96; H, 4.63; Found: C, 41.27; H, 4.33.

Complex $6\left[\mathrm{PF}_{6}\right](166 \mathrm{mg}, 0.18 \mathrm{mmol}, 30 \%)$, a yellow powder, ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right): \delta 7.38\left(\mathrm{~m}, 2 \mathrm{H}\right.$, bdt- H), 6.65 (m, 2H, bdt- H), 2.10 ($\mathrm{s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), $-12.86(\mathrm{~s}, 1 \mathrm{H}, \mu-H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 149.10$ (bdt-C), 127.18 (bdt-CH), 126.79 (bdt-CH), $93.23\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 10.51\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for 6^{+}797.1439; Found 797.1454. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{Ir}_{2} \mathrm{~S}_{2} \mathrm{PF}_{6}$: C, 33.18; H, 3.75; Found: C, 33.37; H, 3.89.

The samples of $\mathbf{D - 5}\left[\mathbf{P F}_{6}\right]$ and $\mathbf{D - 6}\left[\mathbf{P F}_{6}\right]$ were synthesized using an analogous synthetic procedure by using 1 atm of D_{2} in 45% and 32% yields, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum is similar to that of the unlabeled complex. There is no obvious hydride signal found in the related region. ESI-HRMS: Calcd. for D-5 ${ }^{+}$618.0348; Found 618.0349. ESI-HRMS: Calcd. for D-6 ${ }^{+}$798.1492; Found 798.1494.

Synthesis of $\left[\mathbf{C p} * \mathbf{M}\left(\mu-\eta^{2}: \eta^{2}-b d t\right)(\mu-H) M C p^{*}\right]\left[B F_{4}\right]\left(M=R h, 5\left[B F_{4}\right] ; M=\mathbf{I r}\right.$, 6[BF4])

To a stirred solution of $2(246 \mathrm{mg}, 0.40 \mathrm{mmol})$ or $\mathbf{4}(286 \mathrm{mg}, 0.36 \mathrm{mmol})$ in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1 equiv. of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$, then gradually warmed to room temperature. Volatiles were removed in vacuum. The crude product was washed by n-hexane and dried in reduced pressure. Crystals suitable for X -ray diffraction were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with n-hexane at room temperature.

Complex $\mathbf{5}\left[\mathrm{BF}_{4}\right]$ ($155 \mathrm{mg}, 0.22 \mathrm{mmol}, 55 \%$), an orange powder, ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right): \delta 7.22$ (s, 2 H , bdt- H), 6.70 (s, 2 H , bdt- H), 1.94 ($\mathrm{s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), $-9.81(\mathrm{~s}, 1 \mathrm{H}, \mu-H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 149.14$ (bdt-C), 128.53 (bdt- CH), 126.57 (bdt- CH), $100.93\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 10.72\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for $\mathbf{5}^{+}$617.0291; Found 617.0285. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{BF}_{4}$: C, 44.34; H, 5.01; Found: C, 43.97; H, 4.84

Complex 6[BF $\left.{ }_{4}\right]$ ($222 \mathrm{mg}, 0.25 \mathrm{mmol}, 69 \%$), a yellow powder, ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 7.38$ (s, 2 H , bdt- H), 6.66 (s, 2 H , bdt- H), 2.10 ($\mathrm{s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$), $-12.86(\mathrm{~s}, 1 \mathrm{H}, \mu-H) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 149.07$ (bdt-C), 127.14 (bdt- CH), $126.76(\mathrm{bdt}-\mathrm{CH}), 93.20\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 10.49\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for
$\mathbf{6}^{+}$797.1434; Found 797.1447. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{Ir}_{2} \mathrm{~S}_{2} \mathrm{BF}_{4}$: C, 35.37; H, 4.00; Found: C, 35.56; H, 3.70.

Synthesis of $\left[\mathbf{C p} * \mathbf{R h}\left(\mu-\eta^{2}: \eta^{2}-\right.\right.$ bdt $\left.)\left(\mu-\eta^{2}: \eta^{1}-\mathrm{C}_{2} \mathbf{H}_{2} \mathbf{R}\right) \mathbf{R h C p} *\right]\left[B \mathrm{Bh}_{4}\right] \quad(\mathbf{R}=\mathbf{H}$, $\mathbf{7 a}\left[\mathrm{BPh}_{4}\right] ; \mathbf{R}=\boldsymbol{n}-\mathrm{C}_{3} \mathbf{H}_{7}, 7 \mathrm{bb}\left[\mathrm{BPh}_{4}\right] ; \mathbf{R}=n-\mathrm{C}_{5} \mathrm{H}_{\mathbf{1 1}}, 7 \mathbf{c}\left[\mathrm{BPh}_{4}\right] ; \mathbf{R}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}$, $\left.7 \mathrm{~d}\left[\mathrm{BPh}_{4}\right] ; \mathbf{R}=\boldsymbol{p}-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathbf{7 e}\left[\mathrm{BPh}_{4}\right]\right)$.

To a stirred solution of $\mathbf{5}\left[\mathbf{P F}_{6}\right](100 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 20 mL of THF was added 1 equiv. of terminal alkyne (when acetylene, bubbled 1 atm of acetlyene gas) followed by stirring at $60{ }^{\circ} \mathrm{C}$ for 12 h . The resulting suspension was filtrated at room temperature, and then the filtrate was dried in reduced pressure. The residue was washed with n-hexane and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Volatiles were removed in vacuum. The residues were washed with diethyl ether. The crude products of $\mathbf{7 a}\left[\mathbf{P F}_{6}\right]-\mathbf{7 e}\left[\mathrm{PF}_{6}\right]$ were achieved after drying in reduced pressure. And then, to the stirred solution of the above products in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{NaBPh}_{4}(45 \mathrm{mg}$, 0.13 mmol) followed by stirring at room temperature for 12 h . The resulting suspension was filtrated at room temperature, and then the filtrate was dried in reduced pressure. The residue was washed with diethyl ether. The crude products of $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right]-\mathbf{7 e}\left[\mathbf{B P h}_{4}\right]$ were achieved after drying in reduced pressure. Crystals suitable for X-ray diffraction were obtained from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with n-hexane at room temperature.

Yield of $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right]$ ($85 \mathrm{mg}, 0.09 \mathrm{mmol}$) was 68%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 7.31\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{BPh}_{4}-H\right), 7.18(\mathrm{~m}, 1 \mathrm{H}$, bdt- H), $7.12(\mathrm{~m}, 1 \mathrm{H}$, bdt- $H), 7.02(\mathrm{t}, 8 \mathrm{H}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{BPh}_{4}-H\right), 6.87\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right), 6.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{bdt}-H), 6.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}\right.$ $\left.=15.7 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz},=\mathrm{CH}-H\right), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz},=\mathrm{CH}_{2}-H\right), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.7 \mathrm{~Hz},=\mathrm{CH}_{2}-H$), 1.52 (s, $30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): δ 150.68 (bdt-C), $136.32\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 128.08$ (bdt-CH), 127.52 (bdt-CH), 126.88 $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 126.51\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right), 125.99\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 122.10\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 99.56\left(\mathrm{Cp}^{*}-\mathrm{C}\right)$, $99.50\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 9.00\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for $7 \mathbf{a}^{+}$643.0447; Found 643.0457. Anal. Calcd. for $\mathrm{C}_{52} \mathrm{H}_{57} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{~B} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 62.73; H, 5.82; Found: C, 62.68; H, 5.78.

Yield of $\mathbf{7 b}\left[\mathbf{B P h}_{4}\right](85 \mathrm{mg}, 0.08 \mathrm{mmol})$ was $65 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right)$: $\delta 7.30\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{BPh}_{4}-H\right), 7.17-7.12\left(\mathrm{~m}, 2 \mathrm{H}\right.$, bdt- H), $7.02\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{BPh}_{4}-H\right)$, $6.87\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right), 6.69\left(\mathrm{~m}, 2 \mathrm{H}\right.$, bdt-H), $4.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 4.12(\mathrm{~s}$,
$1 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}$), 2.52-2.47 (m, $\left.2 \mathrm{H},=\mathrm{CCH}_{2}-\right), 1.48\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.41(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): δ 151.85 (bdt-C), $136.29\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 128.02$ (bdt- CH), 127.91 (bdt- CH), 126.54 $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 125.98\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 122.07\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 99.36\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 24.99\left(-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, $15.51\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.48\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.99\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for $7 \mathbf{b}^{+}$ 685.0916; Found 685.0923. Anal. Calcd. for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{~B}: \mathrm{C}, 65.74 ; \mathrm{H}, 6.32$; Found: C, 65.30; H, 6.36.

Yield of $\mathbf{7 c}\left[\mathbf{B P h}_{4}\right]$ ($86 \mathrm{mg}, 0.08 \mathrm{mmol}$) was $64 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right)$: $\delta 7.30\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{BPh}_{4}-H\right), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{bdt}-H), 7.02\left(\mathrm{t}, 8 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right)$, $6.87\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right), 6.70\left(\mathrm{~m}, 2 \mathrm{H}\right.$, bdt-H), $4.71\left(\mathrm{~s}, 1 \mathrm{H}, H_{2} \mathrm{C}=\mathrm{C}-\right), 4.11(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\right), 2.52\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CCH}_{2}-\right), 1.48\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}-\right)$, $0.95\left(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 151.25$ (bdt-C), $135.89\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 127.69$ (bdt- CH$), 127.47$ (bdt- CH$), 126.17\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\right), 126.14$ $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\right), 125.57\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 121.66\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 99.01\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 98.95\left(\mathrm{Cp}^{*}-\mathrm{C}\right), 47.65$ $\left(-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3}-\right)$, $32.25\left(-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2}-\right)$, $31.22\left(-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, $22.82\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.98$ $\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.62\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for $7 \mathrm{c}^{+} 713.1229$; Found 713.1223. Anal. Calcd. for $\mathrm{C}_{57} \mathrm{H}_{67} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{~B}: \mathrm{C}, 66.28$; H, 6.54; Found: C, 66.15; H, 6.78.

Yield of $\mathbf{7 d}\left[\mathbf{B P h}_{4}\right]$ ($85 \mathrm{mg}, 0.08 \mathrm{mmol}$) was $62 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right)$: $\delta 7.30\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{BPh}_{4}-H\right), 7.24(\mathrm{~m}, 1 \mathrm{H}$, bdt- H), $7.18(\mathrm{~m}, 1 \mathrm{H}$, bdt- H), $7.14(\mathrm{~d}, 2 \mathrm{H}, J=8$ $\mathrm{Hz}, \mathrm{Ph}-H), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{Ph}-H), 7.02\left(\mathrm{t}, 8 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right), 6.87(\mathrm{t}, 4 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right), 6.73\left(\mathrm{~m}, 2 \mathrm{H}\right.$, bdt- H), $4.85\left(\mathrm{~s}, 1 \mathrm{H}, H_{2} \mathrm{C}=\mathrm{C}-\right), 3.87(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-$), $2.35\left(\mathrm{~s}, 3 \mathrm{H}\right.$, Toluene- $\left.\mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right): \delta 151.20$ (bdt-C), $136.30\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 128.95$ (bdt- CH$), 128.76(\mathrm{Ph}-C)$, 128.71 (bdt- CH$), 127.78(\mathrm{Ph}-\mathrm{C}), 126.77\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}^{-}\right), 126.54\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\right), 125.99$ $\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 122.08\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 99.58\left(\mathrm{~s}, \mathrm{Cp}^{*}-\mathrm{C}\right), 21.22\left(\right.$ Toluene $\left.-\mathrm{CH}_{3}\right), 8.61\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for 7d ${ }^{+}$733.0916; Found 733.0918. Anal. Calcd. for $\mathrm{C}_{59} \mathrm{H}_{63} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{~B} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 65.24 ; H, 5.89; Found: C, 65.33 ; H, 5.70.

Yield of $\mathbf{7 e}\left[\mathbf{B P h}_{4}\right]$ ($81 \mathrm{mg}, 0.08 \mathrm{mmol}$) was $58 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}\right)$: $\delta 7.30-7.27\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{BPh}_{4}-H\right.$ and $\left.\mathrm{Ph}-H\right), 7.25(\mathrm{~m}, 1 \mathrm{H}$, bdt- $H), 7.19(\mathrm{~m}, 3 \mathrm{H}$, bdt- H and $\mathrm{Ph}-H), 7.02\left(\mathrm{t}, 8 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right), 6.87\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{BPh}_{4}-H\right), 6.74(\mathrm{~m}$, 2 H , bdt- H), $4.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\right), 3.93$ (s, 1H, $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-$), 1.31 ($\mathrm{s}, 30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{ppm}$): $\delta 146.47$ (bdt-C), 136.31 ($\left.\mathrm{BPh}_{4}-\mathrm{C}\right), 129.93$ ($\mathrm{Ph}-\mathrm{C}$), 128.87 (bdt- CH), 128.46 ($\mathrm{Ph}-C$), 127.93 (bdt- CH), $126.98\left(\mathrm{H}_{2} \mathrm{C}=C-\right), 126.72$
$\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\right), 125.95\left(\mathrm{BPh}_{4}-\mathrm{C}\right), 122.10\left(\mathrm{BPh}_{4}-C\right), 99.89\left(\mathrm{Cp}^{*}-C\right), 99.83\left(\mathrm{Cp}^{*}-C\right), 8.67$ $\left(\mathrm{Cp}^{*}-\mathrm{CH}_{3}\right)$. ESI-HRMS: Calcd. for 7e ${ }^{+} 753.0370$; Found 753.0381. Anal. Calcd. for $\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{BCl} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 61.18; H, 5.40; Found: C, 60.78 ; H, 5.32.

Analysis of terminal alkene

To a stirred solution of $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right](96 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added 1 equiv. of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(20 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ and 2 equiv. of $\mathrm{CoCp}_{2}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$ followed by stirring at $60^{\circ} \mathrm{C}$ for 12 h in sealed flask with silicone cap. The resulting ethylene and ethane gas were determined and quantified by GC. The solution was dried in reduced pressure. The residues were extracted with n-hexane. Complex 2 (22 $\mathrm{mg}, 0.04 \mathrm{mmol}$) were obtained by removed the volatiles and solvent in vacuum. When the vinyl complexes were $\mathbf{7 b} \mathbf{b}\left[\mathbf{B P h}_{4}\right](211 \mathrm{mg}, 0.21 \mathrm{mmol}), \mathbf{7 c}\left[\mathbf{B P h} \mathbf{h}_{4}\right](194 \mathrm{mg}, 0.19$ $\mathrm{mmol}), \mathbf{7 d}\left[\mathbf{B P h}_{4}\right](119 \mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathbf{7 e}\left[\mathbf{B P h}_{4}\right](187 \mathrm{mg}, 0.17 \mathrm{mmol}), \mathrm{THF}-d_{8}$ (8 mL) was used as reaction solvent and mellithene ($20 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added as internal standard in above conditions. The resulting 1-amylene, 1-heptene, p-methylstyrene, p-chlorostyrene and complex 2 were determined and quantified by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Entry	Vinyl-bridged dirhodium complexes	Yield (\%)	
		Terminal alkenes and alkanes ${ }^{a}$	2^{a}
1	$7 \mathrm{a}\left[\mathrm{BPh}_{4}\right]$	40^{b}	36^{c}
2	7b $\left[\mathrm{BPh}_{4}\right]$	8	45
3	$7 \mathrm{c}\left[\mathrm{BPh}_{4}\right]$	6	45
4	7d[BPh_{4}]	22	22
5	$7 \mathrm{e}\left[\mathrm{BPh}_{4}\right]$	30	44
${ }^{a}$ Yields analyse	calculated based on ${ }^{1} \mathrm{H}$ NM sproducts are based on GC	mellithene as internal of the isolated produc	

III. References

[1] M. I. Rybinskaya, A. R. Kudinov, V. S. Kaganovich, J. Organomet. Chem., 1983, 246, 279.
[2] C. White, A. Yates, P. M. Maitlis,. Inorg. Synth., 1992, 29, 228.
[3] E. Block, V. Eswarakrishnan, M. Gernon, G. Ofori-Okai, C. Saha, K. Tang, J. Zubieta, J. Am. Chem. Soc., 1989, 111, 658.
[4] R. Xi, M. Abe, T. Suzuki, T. Nishioka, K. Isobe, J. Organomet. Chem., 1997, 549, 117.
[5] G. M. Sheldrick, SADABS, Program for area detector adsorption correction, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.
[6] (a) G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS-97, Program for Solution of Crystal Structures, University of Göttingen, Germany, 1997.

IV. X-ray Crystallographic Data

Table S1. Crystallographic data for $\mathbf{1}\left[\mathbf{B F}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{2}, \mathbf{3}\left[\mathrm{BPh}_{4}\right]$

	$\mathbf{1}\left[\mathrm{BF}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	3 [BPh_{4}]
Formula	$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{3} \mathrm{BF}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Rh}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{Ir}_{2} \mathrm{~S}_{2} \mathrm{BCl}$
Formula weight	823.66	616.47	1149.71
Crystal dimensions (mm^{3})	$0.28 \times 0.21 \times 0.20$	$0.39 \times 0.32 \times 0.27$	$0.31 \times 0.29 \times 0.28$
Crystal system	Triclinic	Triclinic	Triclinic
Space group	$\mathrm{P}-1$	P-1	P-1
$\mathrm{a}(\mathrm{A})$	8.5593(7)	9.6295(4)	10.8763(6)
b (Å)	13.7160(11)	9.8207(4)	13.0712(7)
c (\AA)	13.8176(11)	15.3103(7)	17.1848(10)
α (deg)	77.0026(14)	100.9957(12)	106.9709
β (deg)	88.6155(14)	103.9408(12)	93.6316(9)
γ (deg)	88.3987(14)	106.2076(13)	108.7174(9)
Volume (${ }^{3}{ }^{3}$)	1579.7(2)	1296.65(10)	2179.6(2)
Z	2	2	2
T (K)	173(2)	223(2)	100(2)
$D_{\text {calcd }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.732	1.579	1.752
$\mu\left(\mathrm{mm}^{-1}\right)$	1.472	1.444	6.291
$F(000)$	824	624	1124
No. of rflns. collected	14171	30812	28798
No. of indep. rflns. / $R_{\text {int }}$	5414/0.0542	4546/0.0218	7669/0.0291
No. of obsd. rflns. [$\left.I_{0}>2 \sigma\left(I_{0}\right)\right]$	5037	4154	7283
Data / restraints / parameters	5414/12/352	4546/181/256	7669/0/505
$R_{I} / w R_{2}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]^{\mathrm{a}}$	0.0555/0.1533	0.0523/0.1412	0.0217/0.0555
$R_{l} / w R_{2}\left(\right.$ all data) ${ }^{\text {a }}$	0.0584/0.1571	0.0584/0.1476	0.0233/0.0565
GOF (on $\left.F^{2}\right)^{\text {a }}$	1.049	0.962	1.062
Largest diff. peak and hole (e $\cdot \AA^{-3}$)	1.757/-2.207	1.672/-2.260	0.771/-1.550
CCDC No.	1457067	1457069	1583399

Table S2. Crystallographic data for 4, 5[PF $\mathbf{6}], \mathbf{6}\left[\mathrm{BF}_{4}\right]$

	4	$5\left[\mathrm{PF}_{6}\right]$	$6\left[\mathrm{BF}_{4}\right]$
Formula	$\mathrm{C}_{52} \mathrm{H}_{68} \mathrm{Ir}_{4} \mathrm{~S}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{PF}_{6}$	$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{Ir}_{2} \mathrm{~S}_{2} \mathrm{BF}_{4}$
Formula weight	1590.10	762.45	882.87
Crystal dimensions (mm^{3})	$0.29 \times 0.20 \times 0.18$	$0.38 \times 0.26 \times 0.23$	$0.27 \times 0.19 \times 0.18$
Crystal system	Triclinic	Triclinic	Triclinic
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$	$\mathrm{P}-1$
$\mathrm{a}(\mathrm{A})$	10.7515(5)	9.9962(5)	9.921(4)
b (A)	15.4939(7)	11.8993(6)	11.570(5)
$\mathrm{c}(\AA)$	16.0369(7)	13.3880(6)	13.212(6)
α (deg)	79.6888(14)	104.4486(16)	74.619(13)
β (deg)	77.9010(14)	90.0325(17)	86.919(13)
$\gamma(\mathrm{deg})$	87.8163(14)	95.9034(18)	83.718(13)
Volume (\AA^{3})	2569.9(2)	1533.36(13)	1453.0(11)
Z	2	2	2
$T(\mathrm{~K})$	173(2)	299(2)	278(2)
$D_{\text {calcd }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	2.055	1.651	2.018
$\mu\left(\mathrm{mm}^{-1}\right)$	10.519	1.315	9.332
$F(000)$	1504	764	836
No. of rflns. collected	41132	34096	23707
No. of indep. rflns. / $R_{\text {int }}$	9029/0.0473	5376/0.0351	5021/0.0522
No. of obsd. rflns. [$I_{0}>2 \sigma\left(I_{0}\right)$]	8099	4588	4434
Data / restraints / parameters	9029/366/541	5376/0/338	5021/12/320
$R_{1} / w R_{2}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]^{\text {a }}$	0.0418/0.1124	0.0305/0.0789	0.0506/0.1364
$R_{1} / w R_{2}\left(\right.$ all data) ${ }^{\text {a }}$	0.0475/0.1184	0.0402/0.0858	0.0585/0.1454
GOF (on $\left.F^{2}\right)^{\text {a }}$	1.136	0.860	1.077
Largest diff. peak and hole (e $\cdot \AA^{-3}$)	2.688/-4.213	0.517/-0.568	2.221/-3.561
CCDC No.	1457081	1457073	1457080

Table S3. Crystallographic data for $\mathbf{7 a}[\mathbf{B P h} 4], \mathbf{7 b}[\mathbf{B P h} 4], \mathbf{7 c}[\mathbf{B P h} 4] \cdot \mathbf{C H}_{2} \mathrm{Cl}_{2}$

	7a[BPh_{4}]	7b[BPh_{4}]	7c[$\left.\mathbf{B P h}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula	$\mathrm{C}_{52} \mathrm{H}_{57} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{~B}$	$\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{~B}$	$\mathrm{C}_{58} \mathrm{H}_{69} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{BCl}_{2}$
Formula weight	962.73	1004.80	1117.78
Crystal dimensions (mm^{3})	$0.43 \times 0.36 \times 0.31$	$0.40 \times 0.37 \times 0.31$	$0.41 \times 0.34 \times 0.29$
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	$\mathrm{P}-1$	Cc	$\mathrm{P}-1$
a (A$)$	10.9219(5)	19.4748(9)	13.5617(6)
b (A)	13.2492(6)	10.6687(4)	14.4090(7)
c (\AA)	17.0937(8)	23.5138(11)	15.3302(7)
α (deg)	106.7571(14)	90.00	73.0429(16)
β (deg)	95.4010(15)	106.023(2)	73.0526(17)
γ (deg)	108.6766(13)	90.00	74.0362(16)
Volume (\AA^{3})	2195.89(17)	4695.7(3)	2681.2(2)
Z	2	4	2
$T(\mathrm{~K})$	100(2)	96(2)	100 (2)
$D_{\text {calcd }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.456	1.421	1.385
$\mu\left(\mathrm{mm}^{-1}\right)$	0.882	0.828	0.829
$F(000)$	992	2080	1156
No. of rflns. collected	49402	48368	53411
No. of indep. rflns. / $R_{\text {int }}$	7713/0.0628	8198/0.0249	9291/0.0488
No. of obsd. rflns. [$I_{0}>2 \sigma\left(I_{0}\right)$]	6995	8153	7919
Data / restraints / parameters	7713/0/514	8198/18/529	9291/1422/606
$R_{l} / w R_{2}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]^{\text {a }}$	0.0279/0.0771	0.0308/0.0777	0.0475/0.1065
$R_{l} / w R_{2}\left(\right.$ all data) ${ }^{\text {a }}$	0.0319/0.0803	0.0310/0.0779	0.0589/0.1107
GOF (on $\left.F^{2}\right)^{\text {a }}$	1.033	1.013	1.047
Largest diff. peak and hole (e $\cdot \AA^{-3}$)	0.831/-1.236	1.258/-1.740	2.225/-1.263
CCDC No.	1457076	1457074	1457075

Table S4. Crystallographic data for $\mathbf{7 d}\left[\mathbf{B P h}_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{7 e}\left[\mathbf{B P h}_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

	$\mathbf{7 d}\left[\mathrm{BPh}_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	7e[$\left.\mathbf{B P h}_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula	$\mathrm{C}_{61} \mathrm{H}_{67} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{BCl}_{4}$	$\mathrm{C}_{60} \mathrm{H}_{64} \mathrm{Rh}_{2} \mathrm{~S}_{2} \mathrm{BCl}_{5}$
Formula weight	1222.70	1243.11
Crystal dimensions (mm^{3})	$0.42 \times 0.32 \times 0.30$	$0.40 \times 0.31 \times 0.29$
Crystal system	Triclinic	Triclinic
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$
a (\AA)	11.8737(5)	11.8882(4)
$\mathrm{b}(\mathrm{A})$	13.8883(6)	13.8454(5)
c (\AA)	17.6708(8)	17.6084(6)
α (deg)	88.3611(14)	88.5777(13)
β (deg)	76.5046(13)	76.6031(12)
$\gamma(\mathrm{deg})$	80.2492(13)	79.8761(12)
Volume (\AA^{3})	2792.4(2)	2775.14(17)
Z	2	2
$T(\mathrm{~K})$	100(2)	100(2)
$D_{\text {calcd }}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.454	1.488
$\mu\left(\mathrm{mm}^{-1}\right)$	0.896	0.949
$F(000)$	1256	1272
No. of rflns. collected	71858	59082
No. of indep. rflns. / $R_{\text {int }}$	9784/0.0384	9759/0.0345
No. of obsd. rflns. [$I_{0}>2 \sigma\left(I_{0}\right)$]	8974	8792
Data / restraints / parameters	9784/2/613	9759/423/613
$R_{1} / w R_{2}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]^{\text {a }}$	0.0317/0.0841	0.0465/0.1126
$R_{l} / w R_{2}\left(\right.$ all data) ${ }^{\text {a }}$	0.0363/0.0887	0.0527/0.1164
GOF (on $\left.F^{2}\right)^{\text {a }}$	1.003	1.091
Largest diff. peak and hole (e $\cdot \AA^{-3}$)	1.060/-1.636	3.086/-3.536
CCDC No.	1457077	1457078

Figure S1. ORTEP diagram of $\mathbf{1}\left[\mathbf{B F}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Hydrogen atoms, counteranion BF_{4} and one co-crystallized $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S5. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{1}\left[\mathbf{B F}_{4}\right] \cdot \mathbf{C H}_{2} \mathrm{Cl}_{2}$

Distances (A)			
Rh1-Rh2	$3.1708(5)$	Rh1-Cl	$2.4440(11)$
Rh2-Cl	$2.4442(11)$	Rh1-S1	$2.4037(12)$
Rh1-S2	$2.4052(11)$	Rh2-S1	$2.4066(12)$
Rh2-S2	$2.4106(11)$	Rh1-Cp*1	$1.7786(3)$
Rh2-Cp*2	$1.7814(3)$		
Angles (deg)	$82.47(4)$	Rh1-S2-Rh2	$82.36(3)$
Rh1-S1-Rh2	$48.72(3)$	S2-Rh1-Rh2	$48.89(3)$
S1-Rh2-Rh1	$48.75(3)$	S1-Rh2-S2	$75.90(4)$
S2-Rh2-Rh1	$76.05(4)$	S1-Rh1-Rh2	$48.80(3)$
S1-Rh1-S2	$80.88(3)$		$2.11(24)$
Rh1-Cl-Rh2	$70.20(5)$	Cp*1-Cp*2	
Torsion angles (deg)			
S1-Rh1Rh2-S2			

Figure S2. ORTEP diagram of 2
Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S6. Selected bond distances (A) and bond angles (deg) for 2

Distances (Å)			
Rh1-Rh2	$2.6101(8)$	Rh2-S1	$2.3335(15)$
Rh1-S1	$2.3460(15)$	Rh2-S2	$2.3358(15)$
Rh1-S2	$2.3376(18)$	Rh1-Cp*1	$1.8266(5)$
Rh2-Cp*2	$1.8288(4)$		
Angles (deg)			
Rh1-S1-Rh2	$67.80(4)$	Rh2-Rh1-S1	$55.87(4)$
S1-Rh2-S2	$79.81(5)$	Rh1-Rh2-S1	$56.33(4)$
Rh2-Rh1-S2	$56.01(4)$	Cp*-Rh2	$67.91(5)$
Rh1-Rh2-S2	$56.08(5)$		
Torsion angles (deg)			$59.39(26)$
S1-Rh1Rh2-S2	$78.94(6)$		

Figure S3. ORTEP diagram of $\mathbf{3}\left[\mathbf{B P h}_{4}\right]$

Hydrogen atoms, counteranion BPh_{4} are omitted for clarity (thermal ellipsoids shown at 50\% probability level)

Table S7. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{3}\left[\mathbf{B P h}_{4}\right]$

Distances (Å)			
Ir1-Ir2	$3.2956(2)$	Ir1-Cl	$2.4387(8)$
Ir2-Cl	$2.4462(8)$	Ir1-S1	$2.4224(8)$
Ir1-S2	$2.4018(8)$	Ir2-S1	$2.4164(8)$
Ir2-S2	$2.3957(8)$	Ir1-Cp*1	$1.7814(2)$
Ir2-Cp*2	$1.7829(2)$		
Angles (deg)		Ir1-S2-Ir2	$86.78(11)$
Ir1-S1-Ir2	$85.86(3)$	S1-Ir2-S2	$46.54(2)$
S1-Ir2-Ir1	$47.15(2)$	S1-Ir1-Ir2	$74.62(3)$
S2-Ir2-Ir1	$46.69(2)$		$47.00(2)$
S1-Ir1-S2	$74.40(3)$	Cp*1-Cp*2	$5.81(15)$
Ir1-Cl-Ir2	$84.85(2)$		
Torsion angles (deg)			
S1-Ir1Ir2-S2	$63.83(4)$		

Figure S4. ORTEP diagram of 4
Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S8. Selected bond distances (\AA) and bond angles (deg) for 4

Distances (Å)			
Ir1-Ir2	$2.6441(4)$	Ir2-S1	$2.3482(18)$
Ir1-S1	$2.3374(18)$	Ir2-S2	$2.3241(17)$
Ir1-S2	$2.3418(18)$	Ir1-Cp*1	$1.8165(3)$
Ir2-Cp*2	$1.8285(3)$		
Angles (deg)			
Ir1-S1-Ir2	$68.71(5)$	Ir2-Ir1-S1	$55.84(4)$
S1-Ir2-S2	$77.84(6)$	Ir1-Ir2-S1	$55.45(4)$
Ir2-Ir1-S2	$55.16(4)$	Cp*1-Cp*2	$69.04(5)$
Ir1-Ir2-S2	$55.80(4)$		$66.24(30)$
Torsion angles (deg)			
S1-Ir1Ir2-S2	$80.86(7)$		

Figure S5. ORTEP diagram of 5[PF $\mathbf{P F}_{6}$
Hydrogen atoms except for the bridging hydride, counteranion PF_{6} are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S9. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{5}\left[\mathbf{P F}_{6}\right]$

Distances (Å)			
Rh1-Rh2	$2.6924(4)$	Rh1-H	$1.79(5)$
Rh2-H	$1.82(4)$	Rh1-S1	$2.3754(10)$
Rh1-S2	$2.3774(10)$	Rh2-S1	$2.3777(9)$
Rh2-S2	$2.3655(10)$	Rh1-Cp*1	$1.7973(3)$
Rh2-Cp*2	$1.7909(3)$		
Angles (deg)			
Rh1-S1-Rh2	$69.01(3)$	Rh1-S2-Rh2	$69.18(3)$
S1-Rh2-Rh1	$55.46(2)$	S2-Rh1-Rh2	$55.20(2)$
S2-Rh2-Rh1	$55.62(2)$	S1-Rh2-S2	$78.10(3)$
S1-Rh1-S2	$77.91(3)$	S1-Rh1-Rh2	$55.54(2)$
Torsion angles (deg)			
S1-Rh1Rh2-S2	$80.35(3)$	Cp*1-Cp*2	$40.87(18)$

Figure S6. ORTEP diagram of $\mathbf{6}\left[\mathrm{BF}_{4}\right]$
Hydrogen atoms except for the bridging hydride, counteranion BF_{4} are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S10. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{6}\left[\mathbf{B F}_{4}\right]$

Distances (Å)			
Ir1-Ir2	$2.7256(9)$	Ir1-H	$1.60(12)$
Ir2-H	$1.49(12)$	Ir1-S1	$2.391(3)$
Ir1-S2	$2.390(3)$	Ir2-S1	$2.390(3)$
Ir2-S2	$2.388(3)$	Ir1-Cp*1	$1.7943(7)$
Ir2-Cp*2	$1.8007(7)$		
Angles (deg)		Ir1-S2-Ir2	$69.57(7)$
Ir1-S1-Ir2	$69.52(7)$	S1-Ir2-S2	$55.19(7)$
S1-Ir2-Ir1	$55.25(7)$	S1-Ir1-Ir2	$57.23(9)$
S2-Ir2-Ir1	$55.24(7)$		$55.23(7)$
S1-Ir1-S2	$77.19(10)$	Cp*1-Cp*2	$39.85(42)$
Torsion angles (deg)			
S1-Ir1Ir2-S2	$81.14(8)$		

Figure S7. ORTEP diagram of $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right]$

Hydrogen atoms on carbons except for the bridging vinyl group, counteranion BPh_{4} are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S11. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right]$

Distances (Å)			
Rh1-Rh2	$3.1832(3)$	Rh1-C27	$2.299(2)$
Rh1-C28	$2.303(2)$	Rh2-C28	$2.047(2)$
Rh1-S1	$2.3895(6)$	Rh1-S2	$2.4007(6)$
Rh2-S1	$2.4047(6)$	Rh2-S2	$2.3805(6)$
Rh1-Cp*1	$1.8137(2)$	Rh2-Cp*2	$1.8177(2)$
C27-C28	$1.358(4)$		
Angles (deg)	$83.21(2)$	Rh1-S2-Rh2	$83.48(2)$
Rh1-S1-Rh2	$48.19(1)$	S1-Rh2-S2	$75.99(1)$
S1-Rh2-Rh1	$48.53(1)$	S1-Rh1-Rh2	$48.60(1)$
S2-Rh2-Rh1	$75.79(2)$	Cp*1-Cp*2	$5.12(11)$
S1-Rh1-S2			
Torsion angles (deg)			
S1-Rh1Rh2-S2	$69.30(2)$		

Figure S8. ORTEP diagram of $\mathbf{7 b}\left[\mathbf{B P h}_{4}\right]$
Hydrogen atoms on carbons except for C 27 atom, counteranion BPh_{4} are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S12. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{7 b}[\mathbf{B P h} 4]$
Distances (A)

Rh1-Rh2	$3.1592(4)$	Rh1-C27	$2.299(4)$
Rh1-C28	$2.329(4)$	Rh2-C28	$2.091(4)$
Rh1-S1	$2.3960(9)$	Rh1-S2	$2.4065(11)$
Rh2-S1	$2.4138(9)$	Rh2-S2	$2.3868(11)$
Rh1-Cp*1	$1.8166(3)$	Rh2-Cp*2	$1.8152(3)$
C27-C28	$1.334(7)$		

Angles (deg)			
Rh1-S1-Rh2	$82.11(3)$	Rh1-S2-Rh2	$82.46(3)$
S1-Rh2-Rh1	$48.70(2)$	S2-Rh1-Rh2	$48.50(3)$
S2-Rh2-Rh1	$49.04(3)$	S1-Rh2-S2	$76.20(4)$
S1-Rh1-S2	$76.16(3)$	S1-Rh1-Rh2	$49.19(2)$
Torsion angles (deg)			
S1-Rh1Rh2-S2	$69.99(4)$	Cp*1-Cp*2	$2.10(13)$

Figure S9. ORTEP diagram of $\mathbf{7 c}\left[\mathbf{B P h}_{4}\right] \cdot \mathbf{C H}_{2} \mathrm{Cl}_{2}$
Hydrogen atoms on carbons except for C 27 atom, counteranion BPh_{4} and one co-crystallized $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule are omitted for clarity (thermal ellipsoids shown at 50\% probability level)

Table S13. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{7 c}[\mathbf{B P h} 4] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Distances (\AA)

Rh1-Rh2	$3.1532(5)$	Rh1-C27	$2.299(5)$
Rh1-C28	$2.312(5)$	Rh2-C28	$2.084(5)$
Rh1-S1	$2.3641(11)$	Rh1-S2	$2.4131(11)$
Rh2-S1	$2.4006(11)$	Rh2-S2	$2.3951(11)$
Rh1-Cp*1	$1.8227(4)$	Rh2-Cp*2	$1.8175(3)$

C27-C28 1.358(7)

Angles (deg)			
Rh1-S1-Rh2	$82.87(4)$	Rh1-S2-Rh2	$81.96(3)$
S1-Rh2-Rh1	$48.07(3)$	S2-Rh1-Rh2	$48.77(3)$
S2-Rh2-Rh1	$49.27(3)$	S1-Rh2-S2	$76.07(4)$
S1-Rh1-S2	$76.41(4)$	S1-Rh1-Rh2	$49.06(3)$
Torsion angles (deg)			
S1-Rh1Rh2-S2	$69.73(4)$	Cp*1-Cp*2	$3.03(18)$

Figure S10. ORTEP diagram of $\mathbf{7 d}\left[\mathbf{B P h} \mathbf{4}_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Hydrogen atoms on carbons except for C 27 atom, counteranion BPh_{4} and two co-crystallized $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules are omitted for clarity (thermal ellipsoids shown at 50\% probability level)

Table S14. Selected bond distances (A) and bond angles (deg) for $\mathbf{7 d}\left[\mathbf{B P h} \mathbf{h}_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Distances (A)			
Rh1-Rh2	$3.1378(3)$	Rh1-C27	$2.272(2)$
Rh1-C28	$2.311(2)$	Rh2-C28	$2.086(3)$
Rh1-S1	$2.3892(6)$	Rh1-S2	$2.4444(6)$
Rh2-S1	$2.4156(6)$	Rh2-S2	$2.4087(6)$
Rh1-Cp*1	$1.8101(4)$	Rh2-Cp*2	$1.8210(4)$
C27-C28	$1.363(4)$		

Angles (deg)			
Rh1-S1-Rh2	$81.54(2)$	Rh1-S2-Rh2	$80.56(2)$
S1-Rh2-Rh1	$48.87(2)$	S2-Rh1-Rh2	$49.22(2)$
S2-Rh2-Rh1	$50.22(2)$	S1-Rh2-S2	$76.35(2)$
S1-Rh1-S2	$76.16(2)$	S1-Rh1-Rh2	$49.59(2)$
Torsion angles (deg)			
S1-Rh1Rh2-S2	$71.39(2)$	Cp*1-Cp*2	$3.69(14)$

Figure S11. ORTEP diagram of $\mathbf{7 e}\left[\mathbf{B P h} 4 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$
Hydrogen atoms on carbons except for C 27 atom, counteranion BPh_{4} and two co-crystallized $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules are omitted for clarity (thermal ellipsoids shown at 50\% probability level)

Table S15. Selected bond distances (\AA) and bond angles (deg) for $\mathbf{7 e}\left[\mathbf{B P h} \mathbf{h}_{4}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Distances (Å)			
Rh1-Rh2	$3.1381(5)$	Rh1-C27	$2.269(5)$
Rh2-C28	$2.133(5)$	Rh1-C28	$2.306(4)$
Rh1-S1	$2.3949(11)$	Rh1-S2	$2.4406(11)$
Rh2-S1	$2.4107(11)$	Rh2-S2	$2.4104(11)$
Rh1-Cp*1	$1.8137(3)$	Rh2-Cp*2	$1.8162(3)$
C27-C28	$1.272(7)$		

Angles (deg)			
Rh1-S1-Rh2	$81.54(3)$	Rh1-S2-Rh2	$80.61(3)$
S1-Rh2-Rh1	$49.01(3)$	S2-Rh1-Rh2	$49.27(3)$
S2-Rh2-Rh1	$50.11(2)$	S1-Rh2-S2	$76.08(4)$
S1-Rh1-S2	$75.81(4)$	S1-Rh1-Rh2	$49.45(3)$
Torsion angles (deg)			
S1-Rh1Rh2-S2	$71.88(4)$	Cp*1-Cp*2	$3.49(21)$

V. NMR Spectra

Figure S12. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}\left[\mathbf{B F}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S13. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}\left[\mathrm{BF}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S14. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S15. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S16. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S17. The ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3}\left[\mathrm{BPh}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S18. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S19. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
(

Figure S20. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S21. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{D}-\mathbf{5}\left[\mathrm{PF}_{\mathbf{6}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

-
$\stackrel{\rightharpoonup}{\top}$

Figure $\boldsymbol{S} 2 \mathbf{2}$. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}\left[\mathbf{P F}_{\mathbf{6}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

$$
\left.\begin{array}{llllllllllllllllllllll}
210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{array}\right)-10
$$

Figure S23. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left[\mathbf{B F}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S24. The ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{5}\left[\mathbf{B F}_{\mathbf{4}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

®
$\stackrel{\ominus}{\delta}$

Figure S25. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S26. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{D}-\mathbf{6}\left[\mathrm{PF}_{\mathbf{6}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure $\mathbf{S 2 7}$. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S28. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}\left[\mathbf{B F}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S29. The ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{6}\left[\mathrm{BF}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S30. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S31. The ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{7 a}\left[\mathbf{B P h} 4\right.$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S32. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 b}\left[\mathbf{B P h}_{\mathbf{4}}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S33. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{7 b}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S34. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 c}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S35. The ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{7 c}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

 chemical shift (ppm)

Figure S36. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 d}\left[\mathrm{BPh}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S37. The ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{7 d}\left[\mathbf{B P h} \mathbf{h}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S38. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{7 e}\left[\mathbf{B P h} \mathbf{H}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S39. The ${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{7 e}\left[\mathbf{B P h} \mathbf{h}_{4}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

| 145 | 135 | 125 | 115 | 105 | 95 | 85
 chemical shift (ppm) | $\mathbf{7 5}$ | 45 | 35 | 25 | 15 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

VI. ESI-HRMS

Figure S40. ESI-HRMS of $\mathbf{1}\left[\mathrm{BF}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=650.9912$ corresponds to $[1]^{+}$. (b) Calculated isotopic distribution for $[\mathbf{1}]^{+}$(upper) and the amplifying experimental diagram for $[\mathbf{1}]^{+}$ (bottom).
(a)

(b)

Figure S41. ESI-HRMS of $\mathbf{3}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=831.1060$ corresponds to $[3]^{+}$. (b) Calculated isotopic distribution for $[3]^{+}$(upper) and the amplifying experimental diagram for $[3]^{+}$ (bottom).
(a)

(b)

Figure S42. ESI-HRMS of $\mathbf{5}\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=617.0285$ corresponds to $[5]^{+}$. (b) Calculated isotopic distribution for $[5]^{+}$(upper) and the amplifying experimental diagram for $[5]^{+}$ (bottom).
(a)

(b)

Figure S43. ESI-HRMS of $\mathbf{D}-\mathbf{5}\left[\mathbf{P F}_{6}\right]$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=618.0349$ corresponds to $[\mathrm{D}-5]^{+}$(b) Calculated isotopic distribution for $[\mathrm{D}-5]^{+}$(bottom) and the amplifying experimental diagram for $[\mathrm{D}-5]^{+}$ (upper).
(a)

(b)

Figure S44. ESI-HRMS of $\mathbf{5}\left[\mathrm{BF}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=617.0285$ corresponds to $[5]^{+}$(b) Calculated isotopic distribution for $[\mathbf{5}]^{+}$(upper) and the amplifying experimental diagram for $[\mathbf{5}]^{+}$ (bottom).
(a)

(b)

Figure S45. ESI-HRMS of $\mathbf{6}\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=797.1454$ corresponds to $[6]^{+}$(b) Calculated isotopic distribution for $[6]^{+}$(upper) and the amplifying experimental diagram for $[6]^{+}$ (bottom).
(a)

(b)

Figure S46. ESI-HRMS of D-6[PF \mathbf{F}_{6} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=798.1494$ corresponds to $[\mathrm{D}-6]^{+}$(b) Calculated isotopic distribution for $[\mathrm{D}-6]^{+}$(bottom) and the amplifying experimental diagram for $[\mathrm{D}-6]^{+}$ (upper).
(a)

(b)

Figure S47. ESI-HRMS of $\mathbf{6}\left[\mathrm{BF}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=797.1447$ corresponds to $[6]^{+}$(b) Calculated isotopic distribution for $[6]^{+}$(upper) and the amplifying experimental diagram for $[6]^{+}$ (bottom).
(a)

(b)

Figure S48. ESI-HRMS of $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=643.0457$ corresponds to $[7 \mathbf{a}]^{+}$(b) Calculated isotopic distribution for $[\mathbf{7 a}]^{+}$(upper) and the amplifying experimental diagram for $[7 \mathbf{a}]^{+}$ (bottom).
(a)

(b)

Figure S49. ESI-HRMS of $\mathbf{7 b}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=685.0923$ corresponds to $[7 \mathrm{~b}]^{+}$(b) Calculated isotopic distribution for $[\mathbf{7 b}]^{+}$(upper) and the amplifying experimental diagram for $[\mathbf{7 b}]^{+}$ (bottom).
(a)

(b)

Figure S50. ESI-HRMS of $\mathbf{7 c}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=713.1223$ corresponds to $[7 \mathrm{c}]^{+}$(b) Calculated isotopic distribution for $[\mathbf{7 c}]^{+}$(upper) and the amplifying experimental diagram for $[\mathbf{7 c}]^{+}$ (bottom).
(a)

(b)

Figure S51. ESI-HRMS of $\mathbf{7 d}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=733.0918$ corresponds to $[7 \mathbf{d}]^{+}$(b) Calculated isotopic distribution for $[\mathbf{7 d}]^{+}$(upper) and the amplifying experimental diagram for $[\mathbf{7 d}]^{+}$ (bottom).
(a)

(b)

Figure S52. ESI-HRMS of $\mathbf{7 e}\left[\mathbf{B P h}_{4}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(a) The signal at an $\mathrm{m} / \mathrm{z}=753.0381$ corresponds to $[7 \mathrm{e}]^{+}$(b) Calculated isotopic distribution for $[\mathbf{7 e}]^{+}$(upper) and the amplifying experimental diagram for $[7 \mathbf{e}]^{+}$ (bottom).
(a)

(b)

VII. IR Spectra

Figure S53. The IR (KBr) spectrum of $\mathbf{1}\left[\mathbf{B F}_{4}\right]$

Figure S54. The IR (KBr) spectrum of $\mathbf{2}$

Figure S55. The IR (KBr) spectrum of $\mathbf{3}\left[\mathbf{B P h}_{4}\right]$

Figure S56. The IR (KBr) spectrum of 4

Figure $\mathbf{S 5 7}$ The $\mathrm{IR}(\mathrm{KBr})$ spectrum of $\mathbf{5}\left[\mathrm{PF}_{6}\right]$

Figure S58. The IR (KBr) spectrum of $\mathbf{5}\left[\mathbf{B F}_{\mathbf{4}}\right]$

Figure S59. The IR (KBr) spectrum of $\mathbf{6}\left[\mathbf{P F}_{\mathbf{6}}\right]$

Figure S60. The IR (KBr) spectrum of $\mathbf{6}\left[\mathbf{B F}_{\mathbf{4}}\right]$

Figure S61. The IR (KBr) spectrum of $\mathbf{7 a}\left[\mathbf{B P h}_{4}\right]$

Figure S62. The IR (KBr) spectrum of $\mathbf{7 b}\left[\mathbf{B P h}_{4}\right]$

Figure S63. The IR (KBr) spectrum of $\mathbf{7 c}\left[\mathbf{B P h}_{4}\right]$

Figure S64. The IR (KBr) spectrum of $\mathbf{7 d}\left[\mathbf{B P h}_{4}\right]$

Figure S65. The IR (KBr) spectrum of $\mathbf{7 e}\left[\mathbf{B P h}_{4}\right]$

