Electronic Supplementary Information (ESI)

Terminal alkyne insertion into a thiolate-bridged dirhodium hydride complex derived from heterolytic cleavage of H₂

Xiangyu Zhao,^a Dawei Yang,^{*a} Yahui Zhang,^a Baomin Wang,^a and Jingping Qu^{*ab}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China.

^bKey Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China.

*E-mail: qujp@dlut.edu.cn yangdw@dlut.edu.cn

Table of Contents

I. General Materials and Methods	S3
II. Experimental Procedures and Analytical Data	
III. References	
IV. X-ray Crystallographic Data	S11
V. NMR Spectra	S26
VI. ESI-HRMS	S40
VII. IR Spectra	\$53

I. General Materials and Methods

General Consideration. All manipulations were routinely carried out under an argon atmosphere by standard Schlenk-line techniques unless otherwise specified or Mikrouna argon-filled glove box. All solvents were dried and distilled over an appropriate drying agent under argon or nitrogen. $[Cp*Rh(\mu-Cl)_3RhCp*][BF_4]$,¹ $[Cp*Ir(t-Cl)(\mu-Cl)]_2$,² benzene-1,2-dithiol (bdt)³ and $[Cp*Ir(bdt)]^4$ were prepared according to the literature. NaBPh₄, HBF₄•Et₂O, CoCp₂, MeONa, ferrocenium hexafluorophosphate (Fc•PF₆) and terminal alkynes were commercial available and used without further purification.

Spectroscopic Measurements. The NMR spectra were recorded on a Brüker 400 Ultra Shield spectrometer. The chemical shifts (δ) are given in parts per million relative to CD₂Cl₂ (5.32 ppm for ¹H; 53.84 ppm for ¹³C). Infrared spectra were recorded on an NEXVSTM FT-IR spectrometer. ESI-HRMS were recorded on a HPLC/Q-Tof micro spectrometer, except that **D-5[PF₆]** and **D-6[PF₆]** was recorded on LTQ Orbitrap XL. Elemental analyses were performed on a Vario EL analyzer. GC was performed on an Agilent 7890B spectrometer.

X-ray Crystallography Procedures. Single-crystal X-ray diffraction studies were carried out on a Brüker SMART APEX CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were performed using the SADABS program,⁵ Structures were solved by direct methods and refined by full-matrix least-squares based on all data using SHELX 97.⁶ Anisotropic thermal displacement coefficients were determined for all non-hydrogen atoms. Hydrogen atoms were placed at idealized positions and refined with fixed isotropic displacement parameters. Atoms C32, C33 of **7c[BPh4]** were disordered and restrained during the refining of the structure. Disordered atomic positions were split and refined using one occupancy parameter per disordered group.

II. Experimental Procedures and Analytical Data

Synthesis of $[Cp*Rh(\mu-\eta^2:\eta^2-bdt)(\mu-Cl)RhCp*][BF_4]$ (1[BF₄]).

Complex $[Cp*Rh(\mu-Cl)_3RhCp*][BF_4]$ (405 mg, 0.61 mmol) was added to MeOH (100 mL) followed by a suspension of disodium benzene-1,2-dithiolate (Na₂bdt) in MeOH (100 mL) at -78 °C, which was prepared by the reaction of MeONa (66 mg,

1.22 mmol) and benzene-1,2-dithiol (86 mg, 0.61 mmol) in MeOH at room temperature. The mixture was stirred overnight as it warmed to room temperature. The resulting dark red suspension was evaporated, and then the residue was extracted with CH_2Cl_2 (200 mL). The solution was evaporated to dryness in reduced pressure and the residue was washed by diethyl ether. A dark red powder of **1**[**BF**₄] (317 mg, 0.43 mmol, 70%) was obtained after the volatiles were removed in vacuum. Crystals suitable for X-ray diffraction were obtained from a CH_2Cl_2 solution layered with *n*-hexane at room temperature.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.18 (dd, 2H, $J_1 = 5.4$ Hz, $J_2 = 3.2$ Hz, bdt-H), 6.71 (dd, 2H, $J_1 = 5.4$ Hz, $J_2 = 3.2$ Hz, bdt-H), 1.52 (s, 30H, Cp*-CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 152.64 (bdt-C), 128.43 (bdt-CH), 127.01 (bdt-CH), 97.83 (Cp*-C), 8.87 (Cp*-CH₃). ESI-HRMS: Calcd. for **1**⁺ 650.9901; Found 650.9912. Anal. Calcd. For C₂₆H₃₄Rh₂S₂ClBF₄: C, 42.27; H, 4.64. Found: C, 42.22; H, 4.97.

Synthesis of $[Cp*Rh(\mu - \eta^2: \eta^2 - bdt)RhCp*]$ (2).

To a stirred solution of $1[BF_4]$ (406 mg, 0.55 mmol) in 200 mL of CH₂Cl₂ was added 2 equiv. of CoCp₂, followed by stirring at room temperature for 12 h. Volatiles were removed in vacuum, and the crude product was extracted with *n*-hexane (3×100 mL). A dark-red powder of 2 (259 mg, 0.42 mmol, 76%) were achieved after drying in reduced pressure. Crystals of 2 suitable for the X-ray diffraction experiment were grown from saturated *n*-hexane solution at -30 °C.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 6.91 (s, 2H, bdt-*H*), 6.39 (s, 2H, bdt-*H*), 1.87 (s, 30H, Cp*-CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 154.58 (bdt-*C*), 126.27 (bdt-CH), 123.75 (bdt-CH), 92.79 (Cp*-C), 11.23 (s, Cp*-CH₃). Anal. Calcd for C₂₆H₃₄Rh₂S₂: C, 50.65; H, 5.56; Found: C, 50.56; H, 5.80.

Synthesis of $[Cp*Ir(\mu-\eta^2:\eta^2-bdt)(\mu-Cl)IrCp*][BPh_4]$ (3[BPh_4]).

Complexes $[Cp*Ir(t-Cl)(\mu-Cl)]_2$ (231 mg, 0.29 mmol) and [Cp*Ir(bdt)] (271 mg, 0.58 mmol) were added to CH_2Cl_2 (150 mL) followed by NaBPh₄ (200 mg, 0.58 mmol) at -78 °C. The mixture was stirred as it warmed to room temperature. The resulting dark orange suspension was filtered. The filtrate was evaporated to dryness in reduced pressure and the residue was washed by diethyl ether. A yellow powder of **3[BPh₄]** (460 mg, 0.4 mmol, 69%) was obtained after the volatiles were removed in vacuum. Crystals suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution layered

with *n*-hexane at room temperature.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.31 (s, 8H, BPh₄-*H*), 7.22 (s, 2H, bdt-*H*), 7.02 (t, $J_1 = 6.6$ Hz, 8H, BPh₄-*H*), 6.87 (s, 4H, BPh₄-*H*), 6.70 (s, 2H, bdt-*H*), 1.50 (s, 30H, Cp*-CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 152.37 (bdt-*C*), 136.31 (BPh₄-*C*), 127.61 (bdt-CH) 126.72 (bdt-CH), 125.98 (BPh₄-CH), 122.07 (BPh₄-CH), 90.71 (Cp*-*C*), 8.75 (Cp*-*C*H₃). ESI-HRMS: Calcd. for **3**⁺ 831.1033; Found 831.1060. Anal. Calcd. For C₅₀H₅₄Ir₂S₂ClB: C, 52.23; H, 4.73. Found: C, 52.02; H, 4.60.

Synthesis of $[Cp*Ir(\mu - \eta^2: \eta^2 - bdt)IrCp*]$ (4).

To a stirred solution of **3[BPh₄]** (471 mg, 0.41 mmol) in 200 mL of CH₂Cl₂ was added 2 equiv. of CoCp₂, followed by stirring at room temperature for 12 h. Volatiles were removed in vacuum, and the crude product was extracted with *n*-hexane (3×100 mL). A brown powder of **4** (192 mg, 0.24 mmol, 58%) were achieved after drying in reduced pressure. Crystals of **4** suitable for the X-ray diffraction experiment were grown from saturated *n*-hexane solution at -30 °C.

¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.08 (dd, 2H, J_1 = 5.2 Hz, J_2 = 3.2 Hz, bdt-H), 6.38 (dd, 2H, J_1 = 5.2 Hz, J_2 = 3.2 Hz, bdt-H), 1.99 (s, 30H, Cp*-CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 154.54 (bdt-C), 124.72 (bdt-CH), 124.38 (bdt-CH), 85.88 (Cp*-C), 11.21 (Cp*-CH₃). Anal. Calcd for C₂₆H₃₄Ir₂S₂: C, 39.27; H, 4.31; Found: C, 39.33; H, 4.10.

Synthesis of $[Cp*M(\mu - \eta^2: \eta^2-bdt)(\mu - H)MCp*][PF_6]$ (M = Rh, 5[PF₆]; M = Ir, 6[PF₆]).

To a stirred solution of **2** (529 mg, 0.86 mmol) or **4** (477 mg, 0.60 mmol) and 1 equiv. of $Fc \cdot PF_6$ in 200 mL of THF was bubbled 1 atm of H₂, followed by stirring at 60 °C for 12 h under H₂ (1 atm). The resulting suspension was filtrated at room temperature, the filtrate was evaporated to dryness in reduced pressure and the residue was washed by diethyl ether and dried in reduced pressure. Crystals suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution layered with *n*-hexane at room temperature.

Complex **5**[**PF**₆] (229 mg, 0.30 mmol, 35%), an orange powder, ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.22 (dd, 2H, J_1 = 5.4 Hz, J_2 = 3.2 Hz, bdt-*H*), 6.71 (dd, 2H, J_1 = 5.4 Hz, J_2 = 3.2 Hz, bdt-*H*), 1.94 (s, 30H, Cp*-CH₃), -9.84 (t, 1H, J = 26 Hz, μ -*H*). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 149.15 (bdt-*C*), 128.55 (bdt-CH), 126.61 (bdt-*C*H),

100.95 (Cp*-*C*), 10.75 (s, Cp*-*C*H₃). ESI-HRMS: Calcd. for 5^+ 617.0291; Found 617.0285 Anal. Calcd. for C₂₆H₃₅Rh₂S₂PF₆: C, 40.96; H, 4.63; Found: C, 41.27; H, 4.33.

Complex **6**[**PF**₆] (166 mg, 0.18 mmol, 30%), a yellow powder, ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.38 (m, 2H, bdt-*H*), 6.65 (m, 2H, bdt-*H*), 2.10 (s, 30H, Cp*-C*H*₃), -12.86 (s, 1H, μ -*H*). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 149.10 (bdt-*C*), 127.18 (bdt-*C*H), 126.79 (bdt-*C*H), 93.23 (Cp*-*C*), 10.51 (Cp*-*C*H₃). ESI-HRMS: Calcd. for **6**⁺ 797.1439; Found 797.1454. Anal. Calcd. for C₂₆H₃₅Ir₂S₂PF₆: C, 33.18; H, 3.75; Found: C, 33.37; H, 3.89.

The samples of **D**-**5**[**PF**₆] and **D**-**6**[**PF**₆] were synthesized using an analogous synthetic procedure by using 1 atm of D₂ in 45% and 32% yields, respectively. ¹H NMR spectrum is similar to that of the unlabeled complex. There is no obvious hydride signal found in the related region. ESI-HRMS: Calcd. for D-5⁺ 618.0348; Found 618.0349. ESI-HRMS: Calcd. for D-6⁺ 798.1492; Found 798.1494.

Synthesis of $[Cp*M(\mu - \eta^2: \eta^2 - bdt)(\mu - H)MCp*][BF_4]$ (M = Rh, 5[BF_4]; M = Ir, 6[BF_4])

To a stirred solution of **2** (246 mg, 0.40 mmol) or **4** (286 mg, 0.36 mmol) in 100 mL of CH₂Cl₂ was added 1 equiv. of HBF₄•Et₂O at -78 °C, then gradually warmed to room temperature. Volatiles were removed in vacuum. The crude product was washed by *n*-hexane and dried in reduced pressure. Crystals suitable for X-ray diffraction were obtained from a CH₂Cl₂ solution layered with *n*-hexane at room temperature.

Complex **5**[**BF**₄] (155 mg, 0.22 mmol, 55%), an orange powder, ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.22 (s, 2H, bdt-*H*), 6.70 (s, 2H, bdt-*H*), 1.94 (s, 30H, Cp*-CH₃), -9.81 (s, 1H, μ -*H*). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 149.14 (bdt-*C*), 128.53 (bdt-*C*H), 126.57 (bdt-*C*H), 100.93 (Cp*-*C*), 10.72 (Cp*-*C*H₃). ESI-HRMS: Calcd. for **5**⁺ 617.0291; Found 617.0285. Anal. Calcd. for C₂₆H₃₅Rh₂S₂BF₄: C, 44.34; H, 5.01; Found: C, 43.97; H, 4.84

Complex **6**[**BF**₄] (222 mg, 0.25 mmol, 69%), a yellow powder, ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.38 (s, 2H, bdt-*H*), 6.66 (s, 2H, bdt-*H*), 2.10 (s, 30H, Cp*-CH₃), -12.86 (s, 1H, μ -*H*). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 149.07 (bdt-*C*), 127.14 (bdt-*C*H), 126.76 (bdt-*C*H), 93.20 (Cp*-*C*), 10.49 (Cp*-*C*H₃). ESI-HRMS: Calcd. for

6⁺ 797.1434; Found 797.1447. Anal. Calcd. for C₂₆H₃₅Ir₂S₂BF₄: C, 35.37; H, 4.00; Found: C, 35.56; H, 3.70.

Synthesis of $[Cp*Rh(\mu-\eta^2:\eta^2-bdt)(\mu-\eta^2:\eta^1-C_2H_2R)RhCp*][BPh_4]$ (R = H, 7a[BPh_4]; R = *n*-C₃H₇, 7b[BPh_4]; R = *n*-C₅H₁₁, 7c[BPh_4]; R = *p*-MeC₆H₄, 7d[BPh_4]; R = *p*-ClC₆H₄, 7e[BPh_4]).

To a stirred solution of $5[PF_6]$ (100 mg, 0.13 mmol) in 20 mL of THF was added 1 equiv. of terminal alkyne (when acetylene, bubbled 1 atm of acetlyene gas) followed by stirring at 60 °C for 12 h. The resulting suspension was filtrated at room temperature, and then the filtrate was dried in reduced pressure. The residue was washed with *n*-hexane and extracted by CH_2Cl_2 (20 mL). Volatiles were removed in vacuum. The residues were washed with diethyl ether. The crude products of $7a[PF_6]-7e[PF_6]$ were achieved after drying in reduced pressure. And then, to the stirred solution of the above products in 20 mL of CH_2Cl_2 was added NaBPh₄(45 mg, 0.13 mmol) followed by stirring at room temperature for 12 h. The resulting suspension was filtrated at room temperature, and then the filtrate was dried in reduced pressure. The resulting suspension was filtrated at room temperature, and then the filtrate was dried in reduced pressure. The resulting suspension was filtrated at room temperature for 12 h. The resulting for X-ray diffraction were obtained from a CH_2Cl_2 solution layered with *n*-hexane at room temperature.

Yield of **7a**[**BPh**₄] (85 mg, 0.09 mmol) was 68%. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.31 (s, 8H, BPh₄-*H*), 7.18 (m, 1H, bdt-*H*), 7.12 (m, 1H, bdt-*H*), 7.02 (t, 8H, *J* = 7.2 Hz, BPh₄-*H*), 6.87 (t, 4H, *J* = 7.2 Hz, BPh₄-*H*), 6.70 (m, 2H, bdt-*H*), 6.23 (dd, 1H, *J*₁ = 15.7 Hz, *J*₂ = 8.6 Hz, =CH-*H*), 4.97 (d, 1H, *J* = 9.4 Hz, =CH₂-*H*), 4.56 (d, 1H, *J* = 15.7 Hz, =CH₂-*H*), 1.52 (s, 30H, Cp*-CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 150.68 (bdt-*C*), 136.32 (BPh₄-*C*), 128.08 (bdt-*C*H), 127.52 (bdt-*C*H), 126.88 (H₂C=*C*H), 126.51 (H₂C=CH₂), 125.99 (BPh₄-*C*), 122.10 (BPh₄-*C*), 99.56 (Cp*-*C*), 99.50 (Cp*-*C*), 9.00 (Cp*-*C*H₃). ESI-HRMS: Calcd. for **7a**⁺ 643.0447; Found 643.0457. Anal. Calcd. for C₅₂H₅₇Rh₂S₂B 0.5CH₂Cl₂: C, 62.73; H, 5.82; Found: C, 62.68; H, 5.78.

Yield of **7b[BPh₄]** (85 mg, 0.08 mmol) was 65%. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.30 (s, 8H, BPh₄-*H*), 7.17-7.12 (m, 2H, bdt-*H*), 7.02 (t, *J* = 7.2 Hz, 8H, BPh₄-*H*), 6.87 (t, 4H, *J* = 7.2 Hz, BPh₄-*H*), 6.69 (m, 2H, bdt-*H*), 4.71 (s, 1H, *H*₂C=CH), 4.12 (s,

1H, H_2 C=CH), 2.52-2.47 (m, 2H, =CC H_2 -), 1.48 (s, 30H, Cp*-C H_3), 1.41 (m, 2H, C H_2 CH₃), 1.00 (t, 3H, J = 3.4 Hz, CH₂C H_3). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 151.85 (bdt-C), 136.29 (BPh₄-C), 128.02 (bdt-CH), 127.91 (bdt-CH), 126.54 (H₂C=CH), 125.98 (BPh₄-C), 122.07 (BPh₄-C), 99.36 (Cp*-C), 24.99 (-CH₂CH₂-), 15.51 (-CH₂CH₃), 14.48 (-CH₂CH₃), 8.99 (Cp*-CH₃). ESI-HRMS: Calcd. for **7b**⁺ 685.0916; Found 685.0923. Anal. Calcd. for C₅₅H₆₃Rh₂S₂B: C, 65.74; H, 6.32; Found: C, 65.30; H, 6.36.

Yield of **7c[BPh₄]** (86 mg, 0.08 mmol) was 64%. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.30 (s, 8H, BPh₄-*H*), 7.18-7.12 (m, 2H, bdt-*H*), 7.02 (t, 8H, *J* = 7.2 Hz, BPh₄-*H*), 6.87 (t, 4H, *J* = 7.2 Hz, BPh₄-*H*), 6.70 (m, 2H, bdt-*H*), 4.71 (s, 1H, *H*₂C=C⁻), 4.11 (s, 1H, *H*₂C=C⁻), 2.52 (m, 2H, =CC*H*₂⁻), 1.48 (s, 30H, Cp*-CH₃), 1.36 (s, 6H, (C*H*₂)₃⁻), 0.95 (t, 3H, *J* = 6.4 Hz, -C*H*₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 151.25 (bdt-*C*), 135.89 (BPh₄-*C*), 127.69 (bdt-*C*H), 127.47 (bdt-*C*H), 126.17 (H₂C=C⁻), 126.14 (H₂C=C⁻), 125.57 (BPh₄-*C*), 121.66 (BPh₄-*C*), 99.01 (Cp*-*C*), 98.95 (Cp*-*C*), 47.65 (-CH₂(CH₂)₃⁻), 32.25 (-CH₂(CH₂)₂⁻), 31.22 (-CH₂CH₂⁻), 22.82 (-CH₂CH₃), 13.98 (-CH₂CH₃), 8.62 (Cp*-CH₃). ESI-HRMS: Calcd. for **7c**⁺ 713.1229; Found 713.1223. Anal. Calcd. for C₅₇H₆₇Rh₂S₂B: C, 66.28; H, 6.54; Found: C, 66.15; H, 6.78.

Yield of **7d[BPh₄]** (85 mg, 0.08 mmol) was 62%. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.30 (s, 8H, BPh₄-*H*), 7.24 (m, 1H, bdt-*H*), 7.18 (m, 1H, bdt-*H*), 7.14 (d, 2H, *J* = 8 Hz, Ph-*H*), 7.08 (d, 2H, *J* = 8 Hz, Ph-*H*), 7.02 (t, 8H, *J* = 7.2 Hz, BPh₄-*H*), 6.87 (t, 4H, *J* = 7.2 Hz, BPh₄-*H*), 6.73 (m, 2H, bdt-*H*), 4.85 (s, 1H, *H*₂C=C⁻), 3.87 (s, 1H, *H*₂C=C⁻), 2.35 (s, 3H, Toluene-C*H*₃), 1.29 (s, 30H, Cp*-C*H*₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 151.20 (bdt-*C*), 136.30 (BPh₄-*C*), 128.95 (bdt-*C*H), 128.76 (Ph-*C*), 128.71 (bdt-*C*H), 127.78 (Ph-*C*), 126.77 (H₂C=C⁻), 126.54 (H₂C=C⁻), 125.99 (BPh₄-*C*), 122.08 (BPh₄-*C*), 99.58 (s, Cp*-*C*), 21.22 (Toluene-*C*H₃), 8.61 (Cp*-*C*H₃). ESI-HRMS: Calcd. for **7d**⁺ 733.0916; Found 733.0918. Anal. Calcd. for C₅₉H₆₃Rh₂S₂B 0.5CH₂Cl₂: C, 65.24; H, 5.89; Found: C, 65.33; H, 5.70.

Yield of **7e[BPh₄]** (81 mg, 0.08 mmol) was 58%. ¹H NMR (400 MHz, CD₂Cl₂, ppm): δ 7.30-7.27 (m, 10H, BPh₄-*H* and Ph-*H*), 7.25 (m, 1H, bdt-*H*), 7.19 (m, 3H, bdt-*H* and Ph-*H*), 7.02 (t, 8H, *J* = 7.2 Hz, BPh₄-*H*), 6.87 (t, 4H, *J* = 7.2 Hz, BPh₄-*H*), 6.74 (m, 2H, bdt-*H*), 4.80 (s, 1H, *H*₂C=C⁻), 3.93 (s, 1H, *H*₂C=C⁻), 1.31 (s, 30H, Cp*-CH₃). ¹³C NMR (100 MHz, CD₂Cl₂, ppm): δ 146.47 (bdt-*C*), 136.31 (BPh₄-*C*), 129.93 (Ph-*C*), 128.87 (bdt-*C*H), 128.46 (Ph-*C*), 127.93 (bdt-*C*H), 126.98 (H₂C=*C*⁻), 126.72

(H₂*C*=C⁻), 125.95 (BPh₄-*C*), 122.10 (BPh₄-*C*), 99.89 (Cp*-*C*), 99.83 (Cp*-*C*), 8.67 (Cp*-*C*H₃). ESI-HRMS: Calcd. for **7e**⁺ 753.0370; Found 753.0381. Anal. Calcd. for $C_{58}H_{60}Rh_2S_2BCl CH_2Cl_2$: C, 61.18; H, 5.40; Found: C, 60.78; H, 5.32.

Analysis of terminal alkene

To a stirred solution of $7a[BPh_4]$ (96 mg, 0.1 mmol) in THF (5 mL) was added 1 equiv. of HBF₄•Et₂O (20 µL, 0.1 mmol) and 2 equiv. of CoCp₂ (38 mg, 0.2 mmol) followed by stirring at 60 °C for 12 h in sealed flask with silicone cap. The resulting ethylene and ethane gas were determined and quantified by GC. The solution was dried in reduced pressure. The residues were extracted with *n*-hexane. Complex 2 (22 mg, 0.04 mmol) were obtained by removed the volatiles and solvent in vacuum. When the vinyl complexes were **7b[BPh_4]** (211 mg, 0.21 mmol), **7c[BPh_4]** (194 mg, 0.19 mmol), **7d[BPh_4]** (119 mg, 0.11 mmol) and **7e[BPh_4]** (187 mg, 0.17 mmol), THF-*d*₈ (8 mL) was used as reaction solvent and mellithene (20 mg, 0.12 mmol) was added as internal standard in above conditions. The resulting 1-amylene, 1-heptene, *p*-methylstyrene, *p*-chlorostyrene and complex 2 were determined and quantified by ¹H NMR spectroscopy.

	View heridaad diebadiyee	Yield (%)	
Entry	complexes	Terminal alkenes and alkanes ^a	2^{a}
1	7a[BPh4]	40^b	36 ^{<i>c</i>}
2	7b[BPh ₄]	8	45
3	7c[BPh4]	6	45
4	7d[BPh4]	22	22
5	7e[BPh ₄]	30	44

^{*a*}Yields were calculated based on ¹H NMR with mellithene as internal standard. ^{*b*}Quantitative analyses of gas products are based on GC. ^{*c*}Yield of the isolated product.

III. References

- [1] M. I. Rybinskaya, A. R. Kudinov, V. S. Kaganovich, J. Organomet. Chem., 1983, 246, 279.
- [2] C. White, A. Yates, P. M. Maitlis, Inorg. Synth., 1992, 29, 228.
- [3] E. Block, V. Eswarakrishnan, M. Gernon, G. Ofori-Okai, C. Saha, K. Tang, J. Zubieta, J. Am. Chem. Soc., 1989, 111, 658.
- [4] R. Xi, M. Abe, T. Suzuki, T. Nishioka, K. Isobe, J. Organomet. Chem., 1997, 549, 117.
- [5] G. M. Sheldrick, *SADABS*, *Program for area detector adsorption correction*, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.
- [6] (a) G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS-97, Program for Solution of Crystal Structures, University of Göttingen, Germany, 1997.

IV. X-ray Crystallographic Data

	$1[BF_4] \operatorname{CH}_2\operatorname{Cl}_2$	2	3[BPh ₄]
Formula	$C_{27}H_{36}Rh_2S_2Cl_3BF_4$	$C_{26}H_{34}Rh_2S_2$	$C_{50}H_{54}Ir_2S_2BCl$
Formula weight	823.66	616.47	1149.71
Crystal dimensions (mm ³)	$0.28\times0.21\times0.20$	$0.39 \times 0.32 \times 0.27$	$0.31 \times 0.29 \times 0.28$
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
a (Å)	8.5593(7)	9.6295(4)	10.8763(6)
b (Å)	13.7160(11)	9.8207(4)	13.0712(7)
c (Å)	13.8176(11)	15.3103(7)	17.1848(10)
α (deg)	77.0026(14)	100.9957(12)	106.9709
β (deg)	88.6155(14)	103.9408(12)	93.6316(9)
γ (deg)	88.3987(14)	106.2076(13)	108.7174(9)
Volume (Å ³)	1579.7(2)	1296.65(10)	2179.6(2)
Ζ	2	2	2
Т(К)	173(2)	223(2)	100(2)
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.732	1.579	1.752
$\mu (\mathrm{mm}^{-1})$	1.472	1.444	6.291
F (000)	824	624	1124
No. of rflns. collected	14171	30812	28798
No. of indep. rflns. / $R_{\rm int}$	5414/0.0542	4546/0.0218	7669/0.0291
No. of obsd. rflns.[$I_0 > 2\sigma(I_0)$]	5037	4154	7283
Data / restraints / parameters	5414/12/352	4546/181/256	7669/0/505
$R_1 / wR_2 \left[I_0 > 2\sigma(I_0) \right]^{\mathrm{a}}$	0.0555/0.1533	0.0523/0.1412	0.0217/0.0555
R_1 / wR_2 (all data) ^a	0.0584/0.1571	0.0584/0.1476	0.0233/0.0565
GOF (on F^2) ^a	1.049	0.962	1.062
Largest diff. peak and hole (e Å $^{-3}$)	1.757/-2.207	1.672/-2.260	0.771/-1.550
CCDC No.	1457067	1457069	1583399

Table S1. Crystallographic data for 1[BF₄] CH₂Cl₂, 2, 3[BPh₄]

	4	5[PF ₆]	6[BF ₄]
Formula	$C_{52}H_{68}Ir_4S_4$	$C_{26}H_{35}Rh_2S_2PF_6$	$C_{26}H_{35}Ir_2S_2BF_4$
Formula weight	1590.10	762.45	882.87
Crystal dimensions (mm ³)	$0.29 \times 0.20 \times 0.18$	$0.38 \times 0.26 \times 0.23$	$0.27\times0.19\times0.18$
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
a (Å)	10.7515(5)	9.9962(5)	9.921(4)
b (Å)	15.4939(7)	11.8993(6)	11.570(5)
c (Å)	16.0369(7)	13.3880(6)	13.212(6)
α (deg)	79.6888(14)	104.4486(16)	74.619(13)
β (deg)	77.9010(14)	90.0325(17)	86.919(13)
γ (deg)	87.8163(14)	95.9034(18)	83.718(13)
Volume (Å ³)	2569.9(2)	1533.36(13)	1453.0(11)
Ζ	2	2	2
<i>T</i> (K)	173(2)	299(2)	278(2)
$D_{\text{calcd}} (\text{g cm}^{-3})$	2.055	1.651	2.018
$\mu (\mathrm{mm}^{-1})$	10.519	1.315	9.332
F (000)	1504	764	836
No. of rflns. collected	41132	34096	23707
No. of indep. rflns. / $R_{\rm int}$	9029/0.0473	5376/0.0351	5021/0.0522
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	8099	4588	4434
Data / restraints / parameters	9029/366/541	5376/0/338	5021/12/320
$R_1 / wR_2 \left[I_0 > 2\sigma(I_0) \right]^a$	0.0418/0.1124	0.0305/0.0789	0.0506/0.1364
$R_1 / w R_2$ (all data) ^a	0.0475/0.1184	0.0402/0.0858	0.0585/0.1454
GOF $(\text{on } F^2)^a$	1.136	0.860	1.077
Largest diff. peak and hole (e Å $^{\rm -3})$	2.688/-4.213	0.517/-0.568	2.221/-3.561
CCDC No.	1457081	1457073	1457080

Table S2. Crystallographic data for 4, 5[PF₆], 6[BF₄]

	7a[BPh4]	7b[BPh ₄]	7c[BPh ₄] CH ₂ Cl ₂
Formula	$C_{52}H_{57}Rh_2S_2B$	$C_{55}H_{63}Rh_2S_2B$	$C_{58}H_{69}Rh_2S_2BCl_2$
Formula weight	962.73	1004.80	1117.78
Crystal dimensions (mm ³)	$0.43 \times 0.36 \times 0.31$	$0.40 \times 0.37 \times 0.31$	$0.41 \times 0.34 \times 0.29$
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P-1	Cc	P-1
a (Å)	10.9219(5)	19.4748(9)	13.5617(6)
b (Å)	13.2492(6)	10.6687(4)	14.4090(7)
c (Å)	17.0937(8)	23.5138(11)	15.3302(7)
α (deg)	106.7571(14)	90.00	73.0429(16)
β (deg)	95.4010(15)	106.023(2)	73.0526(17)
γ (deg)	108.6766(13)	90.00	74.0362(16)
Volume (Å ³)	2195.89(17)	4695.7(3)	2681.2(2)
Ζ	2	4	2
<i>T</i> (K)	100(2)	96(2)	100 (2)
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.456	1.421	1.385
$\mu (\mathrm{mm}^{-1})$	0.882	0.828	0.829
F (000)	992	2080	1156
No. of rflns. collected	49402	48368	53411
No. of indep. rflns. / $R_{\rm int}$	7713/0.0628	8198/0.0249	9291/0.0488
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	6995	8153	7919
Data / restraints / parameters	7713/0/514	8198/18/529	9291/1422/606
$R_1 / wR_2 \left[I_0 > 2\sigma(I_0) \right]^a$	0.0279/0.0771	0.0308/0.0777	0.0475/0.1065
$R_1 / w R_2$ (all data) ^a	0.0319/0.0803	0.0310/0.0779	0.0589/0.1107
GOF (on F^2) ^a	1.033	1.013	1.047
Largest diff. peak and hole (e Å $^{-3})$	0.831/-1.236	1.258/-1.740	2.225/-1.263
CCDC No.	1457076	1457074	1457075

Table S3. Crystallographic data for **7a[BPh**₄], **7b[BPh**₄], **7c[BPh**₄] CH₂Cl₂

	7d[BPh ₄] 2CH ₂ Cl ₂	7e[BPh ₄] ·2CH ₂ Cl ₂
Formula	$C_{61}H_{67}Rh_2S_2BCl_4$	$C_{60}H_{64}Rh_2S_2BCl_5$
Formula weight	1222.70	1243.11
Crystal dimensions (mm ³)	$0.42 \times 0.32 \times 0.30$	$0.40\times 0.31\times 0.29$
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
a (Å)	11.8737(5)	11.8882(4)
b (Å)	13.8883(6)	13.8454(5)
c (Å)	17.6708(8)	17.6084(6)
α (deg)	88.3611(14)	88.5777(13)
β (deg)	76.5046(13)	76.6031(12)
γ (deg)	80.2492(13)	79.8761(12)
Volume (Å ³)	2792.4(2)	2775.14(17)
Ζ	2	2
<i>T</i> (K)	100(2)	100(2)
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.454	1.488
$\mu (\mathrm{mm}^{-1})$	0.896	0.949
F (000)	1256	1272
No. of rflns. collected	71858	59082
No. of indep. rflns. / $R_{\rm int}$	9784/0.0384	9759/0.0345
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	8974	8792
Data / restraints / parameters	9784/2/613	9759/423/613
$R_1 / wR_2 \left[I_0 > 2\sigma(I_0) \right]^a$	0.0317/0.0841	0.0465/0.1126
R_1/wR_2 (all data) ^a	0.0363/0.0887	0.0527/0.1164
GOF (on F^2) ^a	1.003	1.091
Largest diff. peak and hole (e Å $^{-3}$)	1.060/-1.636	3.086/-3.536
CCDC No.	1457077	1457078

Table S4. Crystallographic data for $7d[BPh_4] \cdot 2CH_2Cl_2$, $7e[BPh_4] \cdot 2CH_2Cl_2$.

Figure S1. ORTEP diagram of 1[BF₄] CH₂Cl₂

Hydrogen atoms, counteranion BF_4 and one co-crystallized CH_2Cl_2 molecule are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Distances (Å)			
Rh1–Rh2	3.1708(5)	Rh1–Cl	2.4440(11)
Rh2–Cl	2.4442(11)	Rh1–S1	2.4037(12)
Rh1–S2	2.4052(11)	Rh2–S1	2.4066(12)
Rh2–S2	2.4106(11)	Rh1–Cp*1	1.7786(3)
Rh2–Cp*2	1.7814(3)		
Angles (deg)			
Rh1–S1–Rh2	82.47(4)	Rh1-S2-Rh2	82.36(3)
S1–Rh2–Rh1	48.72(3)	S2–Rh1–Rh2	48.89(3)
S2–Rh2–Rh1	48.75(3)	S1-Rh2-S2	75.90(4)
S1-Rh1-S2	76.05(4)	S1-Rh1-Rh2	48.80(3)
Rh1ClRh2	80.88(3)		
Torsion angles (deg)			
S1-Rh1Rh2-S2	70.20(5)	Cp*1–Cp*2	2.11(24)

Table S5. Selected bond distances (Å) and bond angles (deg) for $1[BF_4] CH_2Cl_2$

Figure S2. ORTEP diagram of **2**

Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S6. Selected bond distances (Å) and bond angles (deg) for 2

Distances (Å)			
Rh1–Rh2	2.6101(8)	Rh2–S1	2.3335(15)
Rh1–S1	2.3460(15)	Rh2–S2	2.3358(15)
Rh1–S2	2.3376(18)	Rh1–Cp*1	1.8266(5)
Rh2–Cp*2	1.8288(4)		
Angles (deg)			
Rh1-S1-Rh2	67.80(4)	S1-Rh1-S2	79.52(5)
S1-Rh2-S2	79.81(5)	Rh2-Rh1-S1	55.87(4)
Rh2–Rh1–S2	56.01(4)	Rh1-Rh2-S1	56.33(4)
Rh1-Rh2-S2	56.08(5)	Rh1-S2-Rh2	67.91(5)
Torsion angles (deg)			
S1-Rh1Rh2-S2	78.94(6)	Cp*1–Cp*2	59.39(26)

Figure S3. ORTEP diagram of **3[BPh**₄]

Hydrogen atoms, counteranion BPh₄ are omitted for clarity (thermal ellipsoids shown at 50% probability level)

 Table S7. Selected bond distances (Å) and bond angles (deg) for 3[BPh₄]

Distances (Å)			
Ir1–Ir2	3.2956(2)	Ir1–Cl	2.4387(8)
Ir2–Cl	2.4462(8)	Ir1–S1	2.4224(8)
Ir1–S2	2.4018(8)	Ir2–S1	2.4164(8)
Ir2–S2	2.3957(8)	Ir1–Cp*1	1.7814(2)
Ir2–Cp*2	1.7829(2)		
Angles (deg)			
Ir1–S1–Ir2	85.86(3)	Ir1–S2–Ir2	86.78(11)
S1–Ir2–Ir1	47.15(2)	S2–Ir1–Ir2	46.54(2)
S2–Ir2–Ir1	46.69(2)	S1–Ir2–S2	74.62(3)
S1–Ir1–S2	74.40(3)	S1–Ir1–Ir2	47.00(2)
Ir1-Cl-Ir2	84.85(2)		
Torsion angles (deg)			
S1–Ir1Ir2–S2	63.83(4)	Cp*1–Cp*2	5.81(15)

Figure S4. ORTEP diagram of 4

Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S8. Selected bond distances (Å) and bond angles (deg) for 4

Distances (Å)			
Ir1–Ir2	2.6441(4)	Ir2–S1	2.3482(18)
Ir1–S1	2.3374(18)	Ir2–S2	2.3241(17)
Ir1–S2	2.3418(18)	Ir1–Cp*1	1.8165(3)
Ir2–Cp*2	1.8285(3)		
Angles (deg)			
Ir1–S1–Ir2	68.71(5)	S1-Ir1-S2	77.71(6)
S1–Ir2–S2	77.84(6)	Ir2–Ir1–S1	55.84(4)
Ir2–Ir1–S2	55.16(4)	Ir1–Ir2–S1	55.45(4)
Ir1–Ir2–S2	55.80(4)	Ir1-S2-Ir2	69.04(5)
Torsion angles (deg)			
S1–Ir1Ir2–S2	80.86(7)	Cp*1–Cp*2	66.24(30)

Figure S5. ORTEP diagram of **5**[**PF**₆]

Hydrogen atoms except for the bridging hydride, counteranion PF_6 are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S9. Selected bond distances (Å) and bond angles (deg) for $5[PF_6]$

Distances (Å)			
Rh1–Rh2	2.6924(4)	Rh1–H	1.79(5)
Rh2–H	1.82(4)	Rh1–S1	2.3754(10)
Rh1–S2	2.3774(10)	Rh2–S1	2.3777(9)
Rh2–S2	2.3655(10)	Rh1–Cp*1	1.7973(3)
Rh2–Cp*2	1.7909(3)		
Angles (deg)			
Rh1-S1-Rh2	69.01(3)	Rh1-S2-Rh2	69.18(3)
S1-Rh2-Rh1	55.46(2)	S2-Rh1-Rh2	55.20(2)
S2-Rh2-Rh1	55.62(2)	S1-Rh2-S2	78.10(3)
S1-Rh1-S2	77.91(3)	S1-Rh1-Rh2	55.54(2)
Torsion angles (deg)			
S1-Rh1Rh2-S2	80.35(3)	Cp*1–Cp*2	40.87(18)

Figure S6. ORTEP diagram of 6[BF₄]

Hydrogen atoms except for the bridging hydride, counteranion BF_4 are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S10. Selected bond distances (Å) and bond angles (deg) for $6[BF_4]$

Distances (Å)			
Ir1–Ir2	2.7256(9)	Ir1–H	1.60(12)
Ir2–H	1.49(12)	Ir1–S1	2.391(3)
Ir1–S2	2.390(3)	Ir2–S1	2.390(3)
Ir2–S2	2.388(3)	Ir1–Cp*1	1.7943(7)
Ir2–Cp*2	1.8007(7)		
Angles (deg)			
Ir1–S1–Ir2	69.52(7)	Ir1–S2–Ir2	69.57(7)
S1–Ir2–Ir1	55.25(7)	S2–Ir1–Ir2	55.19(7)
S2–Ir2–Ir1	55.24(7)	S1–Ir2–S2	77.23(9)
S1–Ir1–S2	77.19(10)	S1–Ir1–Ir2	55.23(7)
Torsion angles (deg)			
S1–Ir1Ir2–S2	81.14(8)	Cp*1–Cp*2	39.85(42)

Figure S7. ORTEP diagram of 7a[BPh4]

Hydrogen atoms on carbons except for the bridging vinyl group, counteranion BPh₄ are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Distances (Å)			
Rh1–Rh2	3.1832(3)	Rh1-C27	2.299(2)
Rh1-C28	2.303(2)	Rh2C28	2.047(2)
Rh1–S1	2.3895(6)	Rh1–S2	2.4007(6)
Rh2–S1	2.4047(6)	Rh2–S2	2.3805(6)
Rh1–Cp*1	1.8137(2)	Rh2–Cp*2	1.8177(2)
C27–C28	1.358(4)		
Angles (deg)			
Rh1-S1-Rh2	83.21(2)	Rh1-S2-Rh2	83.48(2)
S1-Rh2-Rh1	48.19(1)	S2-Rh1-Rh2	47.99(1)
S2-Rh2-Rh1	48.53(1)	S1-Rh2-S2	75.88(2)
S1-Rh1-S2	75.79(2)	S1-Rh1-Rh2	48.60(1)
Torsion angles (deg)			
S1-Rh1Rh2-S2	69.30(2)	Cp*1–Cp*2	5.12(11)

Table S11. Selected bond distances (Å) and bond angles (deg) for 7a[BPh₄]

Figure S8. ORTEP diagram of 7b[BPh4]

Hydrogen atoms on carbons except for C27 atom, counteranion BPh₄ are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Distances (Å) Rh1-Rh2 3.1592(4) Rh1-C27 2.299(4) Rh1-C28 2.329(4) Rh2-C28 2.091(4) Rh1-S1 2.3960(9) Rh1-S2 2.4065(11) Rh2–S1 2.4138(9) Rh2–S2 2.3868(11) Rh1-Cp*1 1.8166(3) Rh2–Cp*2 1.8152(3) C27–C28 1.334(7)Angles (deg) Rh1-S1-Rh2 82.11(3) Rh1-S2-Rh2 82.46(3) S1-Rh2-Rh1 48.70(2) S2-Rh1-Rh2 48.50(3) S2-Rh2-Rh1 49.04(3) S1-Rh2-S2 76.20(4) S1-Rh1-S2 76.16(3) S1-Rh1-Rh2 49.19(2) Torsion angles (deg) S1-Rh1Rh2-S2 69.99(4) Cp*1-Cp*2 2.10(13)

Table S12. Selected bond distances (Å) and bond angles (deg) for **7b[BPh**₄]

Figure S9. ORTEP diagram of 7c[BPh4] CH2Cl2

Hydrogen atoms on carbons except for C27 atom, counteranion BPh_4 and one co-crystallized CH_2Cl_2 molecule are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S13. Selected bond distances (Å) and bond angles (deg) for **7c[BPh4]** CH₂Cl₂

Distances (Å)			
Rh1–Rh2	3.1532(5)	Rh1-C27	2.299(5)
Rh1-C28	2.312(5)	Rh2C28	2.084(5)
Rh1–S1	2.3641(11)	Rh1–S2	2.4131(11)
Rh2–S1	2.4006(11)	Rh2–S2	2.3951(11)
Rh1–Cp*1	1.8227(4)	Rh2–Cp*2	1.8175(3)
C27–C28	1.358(7)		
Angles (deg)			
Rh1-S1-Rh2	82.87(4)	Rh1-S2-Rh2	81.96(3)
S1-Rh2-Rh1	48.07(3)	S2–Rh1–Rh2	48.77(3)
S2–Rh2–Rh1	49.27(3)	S1-Rh2-S2	76.07(4)
S1-Rh1-S2	76.41(4)	S1-Rh1-Rh2	49.06 (3)
Torsion angles (deg)			
S1-Rh1Rh2-S2	69.73(4)	Ср*1–Ср*2	3.03(18)

Figure S10. ORTEP diagram of 7d[BPh4] 2CH2Cl2

Hydrogen atoms on carbons except for C27 atom, counteranion BPh_4 and two co-crystallized CH_2Cl_2 molecules are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S14. Selected bond distances (Å) and bond angles (deg) for 7d[BPh4] ·2CH2Cl2

Distances (A)			
Rh1–Rh2	3.1378(3)	Rh1-C27	2.272(2)
Rh1-C28	2.311(2)	Rh2C28	2.086(3)
Rh1–S1	2.3892(6)	Rh1–S2	2.4444(6)
Rh2–S1	2.4156(6)	Rh2–S2	2.4087(6)
Rh1–Cp*1	1.8101(4)	Rh2–Cp*2	1.8210(4)
C27–C28	1.363(4)		
Angles (deg)			
Angles (deg) Rh1–S1–Rh2	81.54(2)	Rh1-S2-Rh2	80.56(2)
Angles (deg) Rh1–S1–Rh2 S1–Rh2–Rh1	81.54(2) 48.87(2)	Rh1–S2–Rh2 S2–Rh1–Rh2	80.56(2) 49.22(2)
Angles (deg) Rh1–S1–Rh2 S1–Rh2–Rh1 S2–Rh2–Rh1	81.54(2) 48.87(2) 50.22(2)	Rh1–S2–Rh2 S2–Rh1–Rh2 S1–Rh2–S2	80.56(2) 49.22(2) 76.35(2)
Angles (deg) Rh1–S1–Rh2 S1–Rh2–Rh1 S2–Rh2–Rh1 S1–Rh1–S2	81.54(2) 48.87(2) 50.22(2) 76.16(2)	Rh1–S2–Rh2 S2–Rh1–Rh2 S1–Rh2–S2 S1–Rh1–Rh2	80.56(2) 49.22(2) 76.35(2) 49.59(2)
Angles (deg) Rh1–S1–Rh2 S1–Rh2–Rh1 S2–Rh2–Rh1 S1–Rh1–S2 Torsion angles (deg)	81.54(2) 48.87(2) 50.22(2) 76.16(2)	Rh1–S2–Rh2 S2–Rh1–Rh2 S1–Rh2–S2 S1–Rh1–Rh2	80.56(2) 49.22(2) 76.35(2) 49.59(2)

Figure S11. ORTEP diagram of 7e[BPh4] 2CH2Cl2

Hydrogen atoms on carbons except for C27 atom, counteranion BPh_4 and two co-crystallized CH_2Cl_2 molecules are omitted for clarity (thermal ellipsoids shown at 50% probability level)

Table S15. Selected bond distances (Å) and bond angles (deg) for 7e[BPh₄] ·2CH₂Cl₂

Distances (Å)			
Rh1–Rh2	3.1381(5)	Rh1-C27	2.269(5)
Rh2-C28	2.133(5)	Rh1-C28	2.306(4)
Rh1–S1	2.3949(11)	Rh1–S2	2.4406(11)
Rh2–S1	2.4107(11)	Rh2–S2	2.4104(11)
Rh1–Cp*1	1.8137(3)	Rh2–Cp*2	1.8162(3)
C27–C28	1.272(7)		
Angles (deg)			
Rh1-S1-Rh2	81.54(3)	Rh1-S2-Rh2	80.61(3)
S1-Rh2-Rh1	49.01(3)	S2-Rh1-Rh2	49.27(3)
S2–Rh2–Rh1	50.11(2)	S1-Rh2-S2	76.08(4)
S1-Rh1-S2	75.81(4)	S1-Rh1-Rh2	49.45(3)
Torsion angles (deg)			

V. NMR Spectra

Figure S12. The ¹H NMR spectrum of **1[BF4]** in CD₂Cl₂

Figure S17. The ¹³C NMR spectrum of 3[BPh₄] in CD₂Cl₂

Figure S20. The ¹H NMR spectrum of **5**[**PF**₆] in CD₂Cl₂

Figure S21. The ¹H NMR spectrum of D-**5**[**PF**₆] in CD₂Cl₂

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 chemical shift (ppm)

Figure S23. The ¹H NMR spectrum of **5[BF₄]** in CD₂Cl₂

Figure S25. The ¹H NMR spectrum of **6[PF₆]** in CD₂Cl₂

Figure S26. The ¹H NMR spectrum of D-6[PF₆] in CD₂Cl₂

Figure S28. The ¹H NMR spectrum of **6[BF₄]** in CD₂Cl₂

Figure S30. The ¹H NMR spectrum of 7a[BPh₄] in CD₂Cl₂

Figure S31. The ¹³C NMR spectrum of 7a[BPh₄] in CD₂Cl₂

Figure S33. The ¹³C NMR spectrum of **7b[BPh4]** in CD₂Cl₂

Figure S34. The ¹H NMR spectrum of 7c[BPh₄] in CD₂Cl₂

Figure S35. The ¹³C NMR spectrum of 7c[BPh₄] in CD₂Cl₂

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 chemical shift (ppm)

Figure S37. The ¹³C NMR spectrum of 7d[BPh₄] in CD₂Cl₂

 145
 135
 125
 115
 105
 95
 85
 75
 65
 55
 45
 35
 25
 15
 5

 chemical shift (ppm)
 65
 55
 45
 35
 25
 15
 5

Figure S38. The ¹H NMR spectrum of **7e[BPh₄]** in CD₂Cl₂

VI. ESI-HRMS

Figure S40. ESI-HRMS of 1[BF₄] in CH₂Cl₂

(a) The signal at an m/z = 650.9912 corresponds to $[1]^+$. (b) Calculated isotopic distribution for $[1]^+$ (upper) and the amplifying experimental diagram for $[1]^+$ (bottom).

Figure S41. ESI-HRMS of 3[BPh4] in CH2Cl2

(a) The signal at an m/z = 831.1060 corresponds to $[3]^+$. (b) Calculated isotopic distribution for $[3]^+$ (upper) and the amplifying experimental diagram for $[3]^+$ (bottom).

Figure S42. ESI-HRMS of 5[PF₆] in CH₂Cl₂

(a) The signal at an m/z = 617.0285 corresponds to $[5]^+$. (b) Calculated isotopic distribution for $[5]^+$ (upper) and the amplifying experimental diagram for $[5]^+$ (bottom).

Figure S43. ESI-HRMS of D-5[PF₆] in CD₂Cl₂

(a) The signal at an m/z = 618.0349 corresponds to $[D-5]^+$ (b) Calculated isotopic distribution for $[D-5]^+$ (bottom) and the amplifying experimental diagram for $[D-5]^+$ (upper).

Figure S44. ESI-HRMS of 5[BF₄] in CH₂Cl₂

(a) The signal at an m/z = 617.0285 corresponds to $[5]^+$ (b) Calculated isotopic distribution for $[5]^+$ (upper) and the amplifying experimental diagram for $[5]^+$ (bottom).

Figure S45. ESI-HRMS of 6[PF₆] in CH₂Cl₂

(a) The signal at an m/z = 797.1454 corresponds to $[6]^+$ (b) Calculated isotopic distribution for $[6]^+$ (upper) and the amplifying experimental diagram for $[6]^+$ (bottom).

Figure S46. ESI-HRMS of D-6[PF₆] in CD₂Cl₂

(a) The signal at an m/z = 798.1494 corresponds to $[D-6]^+$ (b) Calculated isotopic distribution for $[D-6]^+$ (bottom) and the amplifying experimental diagram for $[D-6]^+$ (upper).

(b)

Figure S47. ESI-HRMS of 6[BF₄] in CH₂Cl₂

(a) The signal at an m/z = 797.1447 corresponds to $[6]^+$ (b) Calculated isotopic distribution for $[6]^+$ (upper) and the amplifying experimental diagram for $[6]^+$ (bottom).

Figure S48. ESI-HRMS of 7a[BPh4] in CH2Cl2

(a) The signal at an m/z = 643.0457 corresponds to $[7a]^+$ (b) Calculated isotopic distribution for $[7a]^+$ (upper) and the amplifying experimental diagram for $[7a]^+$ (bottom).

Figure S49. ESI-HRMS of 7b[BPh₄] in CH₂Cl₂

(a) The signal at an m/z = 685.0923 corresponds to $[7b]^+$ (b) Calculated isotopic distribution for $[7b]^+$ (upper) and the amplifying experimental diagram for $[7b]^+$ (bottom).

Figure S50. ESI-HRMS of 7c[BPh₄] in CH₂Cl₂

(a) The signal at an m/z = 713.1223 corresponds to $[\mathbf{7c}]^+$ (b) Calculated isotopic distribution for $[\mathbf{7c}]^+$ (upper) and the amplifying experimental diagram for $[\mathbf{7c}]^+$ (bottom).

Figure S51. ESI-HRMS of 7d[BPh₄] in CH₂Cl₂

(a) The signal at an m/z = 733.0918 corresponds to $[\mathbf{7d}]^+$ (b) Calculated isotopic distribution for $[\mathbf{7d}]^+$ (upper) and the amplifying experimental diagram for $[\mathbf{7d}]^+$ (bottom).

Figure S52. ESI-HRMS of 7e[BPh₄] in CH₂Cl₂

(a) The signal at an m/z = 753.0381 corresponds to $[7e]^+$ (b) Calculated isotopic distribution for $[7e]^+$ (upper) and the amplifying experimental diagram for $[7e]^+$ (bottom).

VII. IR Spectra

Figure S53. The IR (KBr) spectrum of **1[BF**₄]

Figure S54. The IR (KBr) spectrum of 2

Figure S56. The IR (KBr) spectrum of 4

Figure S58. The IR (KBr) spectrum of 5[BF₄]

Figure S64. The IR (KBr) spectrum of 7d[BPh₄]

