Supporting Information

Remoulding MOFs pore by auxiliary ligand introduction for stability improvement and highly selective CO_{2}-capture

Qing-Qing Zhang, ${ }^{a}$ Xiao-Fei Liu, ${ }^{\text {a }}$ Lin Ma, ${ }^{a}$ Yong-Sheng Wei, ${ }^{a}$ Zhao-Yang Wang, ${ }^{a}$ Hong Xu*a and ShuangQuan Zang*a
${ }^{\text {a }}$ College of Chemistry and Molecular Engineering, Zhengzhou University,
Zhengzhou 450001, China.

Experimental section

Materials and instrumentation

All the reagents and solvents employed were commercially available and used as supplied without further purification. Tris (3-pyridyl)-1,3,5-benzene (TPB) was synthesized according to the literature. $1^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX spectrometer operating at 400 MHz in DMSO- d_{6}. Elemental analyses (EA) were conducted using a Perkin-Elmer 240 elemental analyzer. Thermogravimetry analyses (TGA) were performed using a TA Q50 instrument from room temperature to $800^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} / \min$ under N_{2} flow. Powder X-ray diffraction (PXRD) patterns of the samples were recorded on a Rigaku B/Max-RB diffractometer with Cu-Ka radiation ($\lambda=1.5418 \AA$) at room temperature. Gas sorption isotherms were measured by a BEL-max physisorption analyzer with activated samples. X-ray photoelectron spectroscopy (XPS) was conducted by HP5950A XPS with an Mg-Ka as source and the C 1s peak at 284.6 eV as an internal standard.

Synthesis of 2,4,6-tris(3,5-dimethylphenyl)pyridine (L_{1})

The organic ligand L_{1} was synthesized according to the literature methods with slight modification, as shown in Fig. S1. 3,5-dimethylbenzaldehyde (20.2 mmol), 1-(3,5-dimethylphenyl) ethanone (40.4 mmol), ammonium acetate (404 mmol) and acetic acid (40 mL) were introduced to a round-bottom flask. Then, the mixture was stirred at $140^{\circ} \mathrm{C}$ for 8 hours. After cooling to room temperature, the solution was poured into water and stirred for another hour. Subsequently, the resulting brown oily substance was dissolved in 3 mL ethanol. Filtrating, washing with ethanol, and drying under high vacuum afforded the desired product as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=8.07(\mathrm{~s}, 2$ H), $7.90(\mathrm{~s}, 4 \mathrm{H}), 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{~d}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 18 \mathrm{H})$ ppm. Elemental analyses calcd. (\%) for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}: \mathrm{C} 87.38, \mathrm{H}$ 5.83 , N 6.79 \%; found: C 87.43 , H 5.77 , N 6.80 \%.

Synthesis of 5,5',5'-(pyridine-2,4,6-triyl)triisophthalic acid (H_{6} pydc)

A mixture of $\mathrm{L}_{1}(1 \mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{HNO}_{3}(3 \mathrm{~mL})$ was sealed in a glass vial. The vial was tightly capped and placed in a $180^{\circ} \mathrm{C}$ oven for 24 h . After being cooled to room temperature, the yellow reaction product was filtrated, washed with water and dried in air. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=13.49(\mathrm{~s}, 6 \mathrm{H}), 9.05(\mathrm{~s}, 4 \mathrm{H}), 8.75(\mathrm{~s}, 2 \mathrm{H}), 8.6(\mathrm{~s}, 3 \mathrm{H}), 8.5$ (s, 2 H) ppm. Elemental analyses calcd. (\%) for $\mathrm{C}_{29} \mathrm{H}_{17} \mathrm{NO}_{12}$: C $60.95, \mathrm{H} 3.00, \mathrm{~N} 2.45 \%$; found: C $58.09, \mathrm{H} 3.34, \mathrm{~N} 3.12 \%$.

Synthesis of Co-pydc

A mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(18 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{H}_{6} \mathrm{pydc}(11 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{N}, \mathrm{N}$-dimethylformamide (DMF) (2 mL) and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was stirred for 10 min in air, and then $150 \mu \mathrm{~L}$ fluoroboric acid $\left(\mathrm{HBF}_{4}\right)$ was added. Thereafter, the red suspension was transferred in a 23 mL teflon-lined stainless steel autoclave and kept at $120^{\circ} \mathrm{C}$ for 3 d . After cooling to room temperature slowly, red fusiform-shaped crystals of Co-pydc were obtained. For further analysis, the crystalline samples were washed with fresh DMF and dried in air. Yield: 42\% (based on Co). Elemental analyses calcd. (\%) for $\left[\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{OH}\right)(\right.$ pydc $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{DMF} \cdot 8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 38.79, \mathrm{H} 4.71, \mathrm{~N} 4.76$; found: $\mathrm{C} 38.71, \mathrm{H} 4.66, \mathrm{~N} 4.87$.

Synthesis of Co-pydc-TPB

$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(18 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{H}_{6} \mathrm{pydc}(11 \mathrm{mg}, 0.02 \mathrm{mmol})$ were dissolved in N, N-dimethylformamide (DMF) $(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The solution was stirred for 10 min in air, followed by an addition of TPB ($5 \mathrm{mg}, 0.016 \mathrm{mmol}$). After another 10 min stirring, $150 \mu \mathrm{~L}$ fluoroboric acid $\left(\mathrm{HBF}_{4}\right)$ was added. The resulting mixture was transferred into a 23 ml Teflon-lined autoclave and heated at $120^{\circ} \mathrm{C}$ for 3 days. After cooling to room temperature, red hexagonal crystals of Co-pydc-TPB were obtained. For further analysis, the crystalline samples were washed with fresh DMF and dried in air. Yield: 65\% (based on Co). Elemental analyses calcd. (\%) for [$\left.\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{OH}\right)(\mathrm{pydc})(\mathrm{TPB})\right] \cdot 2 \mathrm{DMF} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 53.82$, H 3.55, N 6.72; found: C 53.80, H 3.43, N 6.71.

Single-Crystal X-ray crystallography

Single-crystal X-ray diffraction datas were collected on a Rigaku XtaLAB Pro diffractometer with Cu-K α radiation ($\lambda=$ $1.54184 \AA$ Å) at room temperature. All structures were solved by the direct method and refined with full-matrix leastsquares on F^{2} using the SHELXTL-2014 program package. All host-framework non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed geometrically. The PLATON SQUEEZE treatment was applied to Co-pydc and Co-pydc-TPB because all of the guest solvent molecules are extremely disordered and cannot be modeled. Refinements were carried out with constraints on a few bond distances, fixed using the DFIX command. The quantities of solvent molecules were confirmed by elemental analyses and thermogravimetry analyses. Crystallographic data and refinement parameters are provided in Table S1. Distances and angles are on the whole well defined and summarized in Table S2 and S3.

Fig. S1 Synthetic route of H_{6} Pydc

Fig. S2 X-ray photoelectron spectroscopy of Co-pydc

Fig. S3 Perspective view of Co-pydc along b axis

Fig. S4. PXRD patterns of Co-pydc

Fig. S5. PXRD patterns of Co-pydc under different conditions

Fig. S6. Pawley refinements of the PXRD patterns of Co-pydc after $\mathrm{CH}_{3} \mathrm{OH}$ exchanging and drying in air

Fig. S7. Pawley refinements of the PXRD patterns of Co-pydc after $\mathrm{CH}_{3} \mathrm{OH}$ exchanging and drying in vacuum at $50^{\circ} \mathrm{C}$

Fig. S8. Thermogravimetric analysis plots of Co-pydc under different conditions

Fig. S9. PXRD patterns of Co-pydc-TPB

Fig. S10. Thermogravimetric analysis plot of Co-pydc-TPB.

Fig. S11. PXRD patterns of Co-pydc collected during stability test.

Fig. S12. PXRD patterns of Co-pydc collected during stability test.

Fig. S13 (a) N_{2} adsorption-desorption isotherms at 77 K and (b) pore size distribution of Co-pydc-TPB and Co-pydc.

Fig. S14. Isosteric heat of adsorption for CO_{2} in Co-pydc-TPB

Fig. S15. Adsorption isotherms for the uptake of CO_{2} and N_{2} at 273 K in Co-pydc-TPB.

A nice fitting of $\mathrm{CO}_{2}, \mathrm{~N}_{2}$ isotherms adsorption branch of Co-pydc-TPB at 298 Kand 273 K have been calculated based on Toth's isotherm modelㄹ. ${ }^{2}$.

Toth Model: $M=M_{\max } \bullet B^{(1 / n)} \bullet P /(1+B \bullet P)^{(1 / n)}$
M, gas uptake ($\mathrm{mmol} \mathrm{g}^{-1}$); $M_{\text {max }}$, maximum gas uptake ($\mathrm{mmol} \mathrm{g}^{-1}$); B and n, fitting constants;
$\frac{d N}{d P}$
Henry's law constant $\quad K=P \rightarrow 0=B^{(1 / n)} \bullet M_{\text {max }} \ldots(2)$
Henry's law selectivity (upper limit selectivity), gas component i over $j \mathrm{~S}_{\mathrm{i}, \mathrm{j}}$
$\mathrm{S}_{\mathrm{i}, \mathrm{j}}=K_{\mathrm{i}} / K_{\mathrm{j}}$.

Fig. S16. CO_{2} isotherm adsorption of activated Co-pydc-TPB and fitting based on Toth isotherm model; $\mathrm{M}_{\text {max, }}$ maximum uptake; B and n, fitting constants; R^{2} fitting error; K, Henry's law constant: $7.263 \mathrm{mmol}^{-1} \mathrm{~atm}^{-1}$.

Fig. S17. N_{2} isotherm adsorption of activated Co-pydc-TPB and fitting based on Toth isotherm model; $\mathrm{M}_{\text {max }}$, maximum uptake; B and n, fitting constants; R^{2} fitting error; K, Henry's law constant: $0.111 \mathrm{mmol}^{-1} \mathrm{~atm}^{-1}$.

Henry's law selectivity (upper limit selectivity), gas component CO_{2} over N_{2} :

$$
S_{\mathrm{CO} 2 / \mathrm{N} 2}=K_{\mathrm{CO} 2} / K_{\mathrm{N} 2}=65
$$

Fig. S18. CO_{2} isotherm adsorption of activated Co-pydc-TPB and fitting based on Toth isotherm model; $\mathrm{M}_{\max }$, maximum uptake; B and n, fitting constants; R^{2} fitting error; K, Henry's law constant: $10.090 \mathrm{mmol}^{-1} \mathrm{~atm}^{-1}$.

Fig. S19. N_{2} isotherm adsorption of activated Co-pydc-TPB and fitting based on Toth isotherm model; $\mathrm{M}_{\text {max }}$, maximum uptake; B and n, fitting constants; R^{2} fitting error; K, Henry's law constant: $0.231 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{~atm}^{-1}$. Henry's law selectivity (upper limit selectivity), gas component CO_{2} over N_{2} :

$$
S_{\mathrm{CO} 2 / \mathrm{N} 2}=K_{\mathrm{CO} 2} / K_{\mathrm{N} 2}=44
$$

Table S1. Crystal data and structure refinement for Co-pydc, Co-pydc-TPB and Co-pydc-TPB-activated.

Compound	Co-pyde	Co-pydc-TPB	Co-pydc-TPB-activated
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{Co}_{3} \mathrm{NO}_{16}$	$\mathrm{C}_{50} \mathrm{H}_{28} \mathrm{Co}_{3} \mathrm{~N}_{4} \mathrm{O}_{13}$	$\mathrm{C}_{50} \mathrm{H}_{28} \mathrm{Co}_{3} \mathrm{~N}_{4} \mathrm{O}_{13}$
Formula weight	813.23	1069.67	1069.67
Temperature/K	100.01(10)	150.00(10)	150.00(10)
Crystal system	hexagonal	hexagonal	hexagonal
Space group	P-62c	P-62c	P-62c
a / \AA	14.5594(5)	14.3390(2)	14.3406(2)
b / \AA	14.5594(5)	14.3390(2)	14.3406(2)
c / \AA	13.7247(7)	14.3590(3)	14.1626(4)
$\alpha /{ }^{\circ}$	90	90	90
$\beta /{ }^{\circ}$	90	90	90
$\gamma /{ }^{\circ}$	120	120	120
Volume $/ \AA^{3}$	2519.5(2)	2556.78(11)	2522.37(10)
Z	2	2	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.071	1.389	1.407
μ / mm^{-1}	1.025	8.085	8.195
F(000)	814.0	1082.0	1080.0
Crystal size $/ \mathrm{mm}^{3}$	$0.15 \times 0.1 \times 0.1$	$0.1 \times 0.1 \times 0.1$	$0.1 \times 0.1 \times 0.1$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{CuK} \alpha(\lambda=1.54184)$	$\operatorname{CuK} \alpha(\lambda=1.54184)$
2θ range for data collection/ ${ }^{\circ}$	4.386 to 52.988	7.118 to 144.79	7.118 to 132.98
Index ranges	$-16 \leq \mathrm{h} \leq 19,-19 \leq \mathrm{k} \leq 15,-18 \leq 1 \leq 16$	$-10 \leq \mathrm{h} \leq 17,-14 \leq \mathrm{k} \leq 13,-15 \leq 1 \leq 17$	$-9 \leq \mathrm{h} \leq 16,-17 \leq \mathrm{k} \leq 14,-11 \leq 1 \leq 17$
Reflections collected	12677	8196	9154
Independent reflections	$1821\left[\mathrm{R}_{\text {int }}=0.0462, \mathrm{R}_{\text {sigma }}=0.0382\right]$	1654 [$\left.\mathrm{R}_{\text {int }}=0.0407, \mathrm{R}_{\text {sigma }}=0.0383\right]$	$1526\left[\mathrm{R}_{\text {int }}=0.0632, \mathrm{R}_{\text {sigma }}=0.0406\right]$

Data/restraints/parameters	1821/16/84	1654/6/128	1526/20/137	
Goodness-of-fit on F^{2}	1.077	1.114	1.053	
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0259, w \mathrm{R}_{2}=0.0673$	$\mathrm{R}_{1}=0.0646, w \mathrm{R}_{2}=0.1835$	$\mathrm{R}_{1}=0.0593, w \mathrm{R}_{2}=0.1619$	
Final R indexes [all data]	$\mathrm{R}_{1}=0.0282, w \mathrm{R}_{2}=0.0680$	$\mathrm{R}_{1}=0.0695, w \mathrm{R}_{2}=0.1914$	$\mathrm{R}_{1}=0.0630, w \mathrm{R}_{2}=0.1650$	
Largest diff. peak/hole / e \AA^{-3}	0.32/-0.21	0.61/-0.63	0.54/-0.41	
CCDC number	1851529	1851530	1851531	
${ }^{a} R_{1}=\sum\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| \sum /\right\| F_{\mathrm{o}} \mathrm{I} .{ }^{b} w R 2=\left[\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \sum w\left(F_{\mathrm{o}}\right)^{2}\right]^{1 / 2}\right.$				

Table S2. Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$ for Co-pydc

bond lengths (Å)			
Co1-O4 ${ }^{1}$	2.084(2)	$\mathrm{O} 4-\mathrm{Co}^{4}$	2.084(2)
Co1-O4 ${ }^{2}$	2.084(2)	Col-O1	2.0237(5)
Co1-O3 ${ }^{3}$	2.063(2)	$\mathrm{O} 1-\mathrm{Co}^{2}{ }^{2}$	2.0237(5)
Co1-O3	2.063(2)	$\mathrm{O} 1-\mathrm{Co} 1^{4}$	2.0237(5)
Col-O2	2.111(3)		
bond angles (${ }^{\circ}$)			
$\mathrm{O} 4^{1}-\mathrm{Co} 1-\mathrm{O} 4^{2}$	89.73(14)	$\mathrm{O}^{3}-\mathrm{Co} 1-\mathrm{O} 4^{2}$	173.98(10)
O4 ${ }^{1}-\mathrm{Co} 1-\mathrm{O} 2$	88.02(10)	O3-Co1-O4 ${ }^{2}$	90.63(11)
$\mathrm{O} 4{ }^{2}-\mathrm{Co} 1-\mathrm{O} 2$	88.02(10)	O3-Co1-O4 ${ }^{1}$	173.98(10)
$\mathrm{O} 3{ }^{3}-\mathrm{Co} 1-\mathrm{O} 4{ }^{1}$	90.63(11)	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O}^{3}$	88.39(16)
O3-Co1-O2	85.98(10)	$\mathrm{O} 3{ }^{3}-\mathrm{Co} 1-\mathrm{O} 2$	85.98(10)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 4^{2}$	93.55(7)	O1-Col-O4 ${ }^{1}$	93.55(7)
O1-Col-O3 ${ }^{3}$	92.43(7)	O1-Col-O3	92.43(7)
O1-Co1-O2	177.78(11)	$\mathrm{C} 1-\mathrm{O} 4-\mathrm{Col}^{4}$	132.9(2)
Col-O1-Co1 ${ }^{4}$	120.0	C1-O3-Co1	135.9(2)
$\mathrm{Col}^{2}-\mathrm{O} 1-\mathrm{Col}^{4}$	120.0	$\mathrm{Col}^{2}-\mathrm{O} 1-\mathrm{Co} 1$	120.0
Symmetry codes: ${ }^{1+} \mathrm{Y}-\mathrm{X}, 1-\mathrm{X}, 3 / 2-\mathrm{Z} ;{ }^{2}+\mathrm{Y}-\mathrm{X}, 1-\mathrm{X},+\mathrm{Z} ;{ }^{3}+\mathrm{X},+\mathrm{Y}, 3 / 2-\mathrm{Z} ;{ }^{4} 1-\mathrm{Y}, 1+\mathrm{X}-\mathrm{Y},+\mathrm{Z}$.			

Table S3. Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$ for Co-pydc-TPB

bond lengths (A)			
Col-O1	2.0385(13)	Col-N1	2.158(6)
Co1-O2	2.085(5)	O1-Co1 ${ }^{4}$	$2.0385(14)$
Co1-O2 ${ }^{1}$	2.085(5)	$\mathrm{O} 1-\mathrm{Col}^{3}$	$2.0385(13)$
Col-O3 ${ }^{2}$	2.063(5)	O3-Co1 ${ }^{4}$	2.063(5)
Col-O3 ${ }^{3}$	2.063(5)		
bond angles (${ }^{\circ}$)			
O1-Co1-O2	95.06(18)	$\mathrm{O}^{3}-\mathrm{Co} 1-\mathrm{O} 2$	89.4(3)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2^{1}$	95.06(18)	$\mathrm{O}^{2}-\mathrm{Co} 1-\mathrm{O} 2$	174.3(2)
O1-Col-O3 ${ }^{2}$	90.63(16)	$\mathrm{O}^{3}-\mathrm{Co} 1-\mathrm{O}^{2}$	90.2(4)
O1-Co1-O3 ${ }^{3}$	90.63(16)	O3 ${ }^{2}-\mathrm{Co} 1-\mathrm{N} 1$	87.6(5)
O1-Co1-N1	172.6(5)	$\mathrm{O} 3{ }^{3}-\mathrm{Co} 1-\mathrm{N} 1$	82.2(6)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2^{1}$	90.5(4)	$\mathrm{Col}^{2}-\mathrm{O} 1-\mathrm{Col}^{4}$	120.0
O2-Co1-N1	86.7(5)	$\mathrm{Col}^{2}-\mathrm{O} 1-\mathrm{Co} 1$	120.000(1)
$\mathrm{O} 2{ }^{1}-\mathrm{Co} 1-\mathrm{N} 1$	92.1(6)	Col ${ }^{4}$-O1-Col	120.000(1)
$\mathrm{O} 3^{2}-\mathrm{Co} 1-\mathrm{O} 2^{1}$	89.4(3)	C1-O2-Col	129.7(5)
$\mathrm{O} 3{ }^{3}-\mathrm{Co} 1-\mathrm{O} 2^{1}$	174.3(2)	$\mathrm{C} 1-\mathrm{O} 3-\mathrm{Col}^{4}$	137.0(5)
Symmetry codes: ${ }^{1+} \mathrm{X},+\mathrm{Y}, 3 / 2-\mathrm{Z} ;{ }^{2+} \mathrm{Y}-\mathrm{X}, 1-\mathrm{X}, 3 / 2-\mathrm{Z} ;{ }^{3}+\mathrm{Y}-\mathrm{X}, 1-\mathrm{X},+\mathrm{Z} ;{ }^{4} 1-\mathrm{Y}, 1+\mathrm{X}-\mathrm{Y},+\mathrm{Z}$.			

Table S4. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for Co-pydc-TPB-activated

bond lengths (\AA)			
Col-O1	2.038(2)	O1-Co1 ${ }^{4}$	2.038(2)
Co1-O3 ${ }^{1}$	2.096(10)	$\mathrm{O} 1-\mathrm{Co}^{2}{ }^{2}$	2.038(2)
Co1-O3 ${ }^{2}$	2.096(10)	$\mathrm{O} 3-\mathrm{Col}^{4}$	2.096(10)
Co1-O2	2.049(10)	Col-N1	2.179(19)
$\mathrm{Co} 1-\mathrm{O} 2^{3}$	2.049(10)		
bond angles (${ }^{\circ}$)			
O1-Col-O3 ${ }^{1}$	94.1(3)	$\mathrm{O} 2{ }^{3}-\mathrm{Co} 1-\mathrm{O} 3^{1}$	176.1(5)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O}^{2}$	94.1(3)	$\mathrm{O} 23-\mathrm{Co} 1-\mathrm{O}^{2}$	88.2(7)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2^{3}$	89.8(3)	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 2^{3}$	91.0(9)
O1-Co1-O2	89.8(3)	$\mathrm{O} 2^{3}-\mathrm{Co} 1-\mathrm{N} 1$	86.4(4)
O1-Co1-N1	174.5(4)	C2-N1-Col	116.3(13)
$\mathrm{O}^{1}-\mathrm{Col}-\mathrm{O}^{2}$	92.3(8)	C3-N1-Co1	122.3(18)
O3 ${ }^{1}$ - $\mathrm{Co} 1-\mathrm{N} 1$	89.7(4)	O2-Co1-O3 ${ }^{1}$	88.2(7)
$\mathrm{O} 3{ }^{2}-\mathrm{Co} 1-\mathrm{N} 1$	89.7(4)	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 3{ }^{2}$	176.1(5)
Col-O1-Co1 ${ }^{4}$	120.001(1)	O2-Co1-N1	86.4(4)
$\mathrm{C} 1-\mathrm{O} 3-\mathrm{Col}^{4}$	130.5(10)	C1-O2-Col	139.0(10)
Col ${ }^{1}-\mathrm{O} 1-\mathrm{Col}$	119.999(1)	Col ${ }^{1}-\mathrm{O} 1-\mathrm{Col}^{4}$	120.000(1)
Symmetry codes: ${ }^{1+} \mathrm{Y}-\mathrm{X}, 1-\mathrm{X},+\mathrm{Z} ;{ }^{2+Y-X, 1-X, 3 / 2-Z ; ~}{ }^{3}+\mathrm{X},+\mathrm{Y}, 3 / 2-\mathrm{Z} ;{ }^{4} 1-\mathrm{Y}, 1+\mathrm{X}-\mathrm{Y},+\mathrm{Z}$.			

References:

G. Marin, M. Andruh, A. M. Madalan, A. J. Blake, C. Wilson, N. R. Champness and M. Schroder, Crystal Growth \& Design, 2008, 8, 964-975.
L. L. Tan, H. Li, Y. Tao, S. X. Zhang, B. Wang and Y. W. Yang, Adv Mater, 2014, 26, 7027-7031.

