Supporting Information

Palladium-catalyzed olefination of aryl/alkyl halides with trimethylsilydiazomethane via carbene migratory insertion

Qiu-Chao Mu ${ }^{\text {a,b,c }, ~ X i n g-B e n ~ W a n g ~}{ }^{\text {a }}$, Fei Ye ${ }^{a}$, Yu-Li Sun ${ }^{\text {a }}$, Xing-Feng Bai ${ }^{\text {ab, }, \text {, Jing }}$ Chen ${ }^{* b}$, Chun-Gu Xia ${ }^{\text {b }}$, and Li-Wen Xu ${ }^{*, \mathrm{~b}}$

${ }^{\text {a }}$ Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China. Fax: 862886 7756; Tel: 8628867756 E-mail: liwenxu @hznu.edu.cn.
${ }^{\mathrm{b}}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, P. R. China.
${ }^{\mathrm{c}}$ University of Chinese Academy of Sciences, Beijing, P. R. China

Table of Contents

Table of Contents 1

1. General Considerations 2
2. Typical procedure for the synthesis of (E)-Vinylsilane 2
2.1 General procedure for (E)-Vinylsilane using Aryl iodides 2
2.2 General procedure for (E)-Vinylsilane using α-chloroacetamides 3
3. Synthesis and characterization of products 5
4. Gram-Scale Preparation of 5a 18
5. Copies of NMR spectra 19
6. Reference 66

1. General Considerations

Unless other noted, all experiments were carried out under N2 atmosphere. Reactions were monitored by thin layer chromatography using silica gel. Most solvents were purified according to the standard procedures. Deuterated solvents were purchased from Cambridge Isotope Laboratories. The other regular chemicals were obtained from commercial suppliers with purity over 98% and used without further purification. Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR) were recorded using a Bruker 400 MHz spectrometer. The chemical shifts were reported ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CHCl}_{3}\right.$ at 7.26$) .{ }^{13} \mathrm{C}$ NMR was recorded at 100 MHz : chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CHCl}_{3}\right.$ at 76$) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded at 376 MHz . GC/MS date was collected using an Agilent 7890A series GC and 5975C Ms detector. High-resolution mass spectral data were recorded by an Agilent instrument with ESI-MS technique.

2. Typical procedure for the synthesis of (E)-Vinylsilane

2.1 General procedure for (E)-Vinylsilane using Aryl iodides

To a dried vial was added $\left[\mathrm{Pd}(\text { Cinnamyl }) \mathrm{Cl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), $\mathrm{Di}(1-\mathrm{Ad})-n$-butyphosphine (20 mol \%), t - BuOLi ($0.75 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{KOAc}(0.75 \mathrm{~mol}, 1.0$ equiv), then dry dioxane $(1.5 \mathrm{~mL})$ was added. The mixture was stirred at room temperature under N_{2} atmosphere for 1 h . Then a solution of $2(0.75 \mathrm{mmol}, 1.0$ equiv) in dioxane (1 mL) was added, followed by TMSCHN_{2} ($1.1 \mathrm{~mL}, 2 \mathrm{M} / \mathrm{L}, 3.0$ equiv). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 hours. After cooling, the mixture was diluted with water and extracted with EA, the combined organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the filtrate was concentrated under vacuum and purified by column chromatography on silica gel to afford the corresponding 3 .

2.2 General procedure for (E)-Vinylsilane using $\boldsymbol{\alpha}$-chloroacetamides

4 (α-chloroacetamides) synthesized according to the literature methods:
4a, 4c, 4d, 4e (J. Pedroni, M. Boghi, T. Saget, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 9064-9067.)

4b, 4g, 4h (E. J. Hennessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084-12085.)
4 (M. C. Joshi, K. J. Wicht, D. Taylor, R. Hunter, P. J. Smith, T. J. Egan, Eur. J. Med. Chem. 2013, 69, 338-347.)

General optimization procedure

Screening of Base

			$\begin{array}{r} \mathrm{Pd}\left(\mathrm{PPR}_{3}\right) \\ \text { base (1 } \\ \hline \text { dioxane,1 } \end{array}$		
Entry ${ }^{\text {a }}$	Pd salt		Solvent	Base/Additive	Product ${ }^{\text {b }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{KOAc}$	15
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	CsPiv/KOAc	no
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{K}_{2} \mathrm{CO}_{3}$	54
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	38
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	trace
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	KHCO_{3}	22
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	90
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	trace
9	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{Et}_{3} \mathrm{~N}$	no
10	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	t-BuOLi	trace
11	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	t-BuONa	trace
12	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	t-BuOK	trace
13	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		dioxane	$\mathrm{K}_{3} \mathrm{PO}_{4}$	no
14	[Pd(Cinnamy	yl) $\left.\mathrm{Cl}_{2}\right]_{2}, \mathrm{Di}$	d)-n-buty	-BuOLi, KOAc	no
15	[Pd(Cinnamy	yl) $\left.\mathrm{Cl}_{2}\right]_{2}, \mathrm{Di}$	d)-n-buty	-BuOLi	10
$\begin{aligned} & { }^{\mathrm{a}} \mathbf{4 a}(0.1 \\ & \mathrm{mL}), 100 \end{aligned}$	1.0 equiv), T hours. ${ }^{\text {b }}$ Deter	TMSD (3.0 rmined by	$\begin{aligned} & \text { liv), } \mathrm{Pd}(\mathrm{Pl} \\ & \text { MS. } \end{aligned}$	\%), Base (1.3	oxane (1.0

Screening of Solvent

Entry ${ }^{\text {a }}$	Pd salt	Solvent	Base	Product ${ }^{\text {b }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	dioxane	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	90
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	toluene	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	no
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	DMF	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	messy
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	DCE	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	54

${ }^{\mathrm{a}} 4 \mathbf{a}$ ($0.1 \mathrm{mmol}, 1.0$ equiv), TMSD (3.0 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.3 equiv), Solvent (1.0 $\mathrm{mL}), 100^{\circ} \mathrm{C}, 24$ hours. ${ }^{\text {b }}$ Determined by GC-MS.

Screening of Palladium salt

To a dried vial was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.3 equiv) and 4 ($\mathbf{\alpha}-$ chloroacetamides) ($1.0 \mathrm{mmol}, 1.0$ equiv), dry dioxane (1.0 mL) was then added. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 20 mins. Then $\mathrm{TMSCHN}_{2}(1.50 \mathrm{~mL}, 2 \mathrm{M} / \mathrm{L}, 3.0$ equiv) was added slowly and the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 hours. After cooling, the mixture was diluted with water and extracted with EA, the combined organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the filtrate was concentrated under vacuum and purified by column chromatography on silica gel to afford the corresponding 5.

3. Synthesis and characterization of products

(E)-trimethyl(2-methylstyryl)silane (3a) ${ }^{1}$

3a
3a $(62 \mathrm{mg}, 65 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl3) $\delta 141.4,137.8,135.3,130.4,127.8,126.2,125.4,19.7,-1.0$; GC/MS (EI) $190.1(\mathrm{M})^{+}, 175.1(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl[2-(2-fluorophenyl)ethenyl]silane (3b) ${ }^{4}$

3b
3b ($44 \mathrm{mg}, 30 \%, \mathrm{E} / \mathrm{Z}=82: 18$) was isolated as a colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.56-7.52 (m, 1H), 7.24-7.17 (m, 1H), 7.12-7.09 (m, 1H), 7.07-7.04 (m, 1H), 7.02-6.99 (m, 1H), $6.57(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5,159.0,146.3$, $135.3(\mathrm{~d}, J=250.0 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $115.8(\mathrm{~d}, J=22.0 \mathrm{~Hz}),-1.3 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.6$; GC/MS (EI) $194.1(\mathrm{M})^{+}$, 179.1 (M-Me) ${ }^{+}$.
(E)-trimethyl[2-(2-chlorophenyl)ethenyl]silane (3c) ${ }^{5}$

3c

3c $(73 \mathrm{mg}, 69 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.55-7.53 (m, 1H), 7.29-7.22 (m, 1H), 7.16-7.10 (m, 3H), 6.46 (d, $J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.13$ (s, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,136.3,133.1,129.6,128.7,126.7,126.6,-1.2$; GC/MS (EI) $210.1(\mathrm{M})^{+}, 195.1(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-(2-methoxystyryl)trimethylsilane (3d) ${ }^{6}$

3d
3d $(70 \mathrm{mg}, 45 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.55(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 0.17 ($\mathrm{s}, 9 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7$, 139.9, 131.9, 131.0, 129.6, 128.3, 122.7, 113.0, 57.5, 0.9; GC/MS (EI) $206.1(\mathrm{M})^{+}, 191.1(\mathrm{M}-\mathrm{Me})^{+}$.
(E)-trimethyl[2-(2-trifluoromethylphenyl)ethenyl]silane (3e)

3e
3e ($70 \mathrm{mg}, 38 \%, \mathrm{E} / \mathrm{Z}=88: 12$) was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=4.0 \mathrm{~Hz} 8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,149.1,133.6$, $131.0,128.3,126.3,125.5,0.8 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.0 ;$ GC/MS (EI) $244.1(\mathrm{M})^{+}$, $229.1(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl[2-(2-nitrophenyl)ethenyl]silane (3f) ${ }^{8}$

3f $(53 \mathrm{mg}, 32 \%, \mathrm{E} / \mathrm{Z}=88: 12)$ was isolated as a brown oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-$ $7.98(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ $(\mathrm{d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,141.4,137.1,135.2$, $133.0,131.6,127.2(\mathrm{~d}, J=31.0 \mathrm{~Hz}), 123.0(\mathrm{~d}, J=6.0 \mathrm{~Hz}),-2.6 ; \mathrm{GC} / \mathrm{MS}(\mathrm{EI}) 221.1(\mathrm{M})^{+}, 206.1$ $(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl[2-(2-trifluoromethoxyphenyl)ethenyl]silane (3g)

3g
$\mathbf{3 g}(70 \mathrm{mg}, 36 \%, \mathrm{E} / \mathrm{Z}=74: 26)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.55-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,149.6,145.2,134.8,132.3,130.7,127.6,125.7(\mathrm{~d}, J=$ 32.0 Hz), 120.2, -2.5; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.3$; GC/MS (EI) 260.1 (M) ${ }^{+}, 245.1$ (M$\mathrm{Me})^{+}$.
(E)-trimethyl[2-(2-cyanophenyl)ethenyl]silane (3h)

3h

3h $(84 \mathrm{mg}, 56 \%, \mathrm{E} / \mathrm{Z}=88: 12)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.62(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 140.1,137.7,135.2$, 131.7 (d, $J=30.0 \mathrm{~Hz}, 1 \mathrm{H}), 126.7,124.3,116.5,109.9,-2.6$; GC/MS (EI) $201.1(\mathrm{M})^{+}, 186.1$ $(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl[2-(3-methylphenyl)ethenyl]silane (3i)

$3 i$
$3 \mathbf{i}(50 \mathrm{mg}, 53 \%, \mathrm{E} / \mathrm{Z}=91: 9)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.20-7.14 (m, 3H), $7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,137.6,137.3,128.5$, 128.0, 127.1, 126.3, 122.8, 20.6, -1.9; GC/MS (EI) 190.1 (M) ${ }^{+}$, 175.1 (M-Me) ${ }^{+}$.

(E)-trimethyl[2-(2-chlorophenyl)ethenyl]silane (3j) ${ }^{10}$

$3 j$

3j ($44 \mathrm{mg}, 42 \%, \mathrm{E} / \mathrm{Z}=83: 17$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.23-7.11 (m, 4H), $6.76(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,139.3,133.6,130.7,128.8,126.9,125.4,123.7,-2.1 ; \mathrm{GC} / \mathrm{MS}$ (EI) $210.1(\mathrm{M})^{+}, 195.1(\mathrm{M}-\mathrm{Me})^{+}$.
(E)-(3-methoxystyryl)trimethylsilane (3k) ${ }^{5}$

3k
$\mathbf{3 k}(71 \mathrm{mg}, 49 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil:; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.53$ $(\mathrm{d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,143.6$, $140.0,130.0,129.6,119.2,114.0,111.4,55.3,-1.1$; GC/MS (EI) $206.1(\mathrm{M})^{+}, 191.1(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl[2-(3-trifluoromethylphenyl)ethenyl]silane (3I) ${ }^{5}$

31
$31(80 \mathrm{mg}, 44 \%, \mathrm{E} / \mathrm{Z}=87: 13)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.68(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}$, $J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7$, $142.0,139.1,132.1,129.4,128.9,124.3(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 123.0(\mathrm{~d}, J=4.0 \mathrm{~Hz}),-1.4 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.6; GC/MS (EI) $244.1(\mathrm{M})^{+}, 229.1(\mathrm{M}-\mathrm{Me})^{+}$.
(E)-trimethyl[2-(3-nitrophenyl)ethenyl]silane (3m) ${ }^{8}$

3m

3m ($60 \mathrm{mg}, 36 \%, \mathrm{E} / \mathrm{Z}=88: 12$) was isolated as a brown oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27$ (s, 1H), 8.09-8.06 (m, 1H), 7.73 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.50 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=20.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,140.8$, 139.9, 133.7, 132.1, 129.3, 122.2, 120.7, -1.5; GC/MS (EI) 221.1 (M) ${ }^{+}$, 206.1 (M-Me) ${ }^{+}$.

(E)-trimethyl[2-(3-cyanophenyl)ethenyl]silane (3n)

3n

3n ($91 \mathrm{mg}, 60 \%, \mathrm{E} / \mathrm{Z}=99: 1$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.0, $138.4,132.2,129.9(\mathrm{~d}, J=54.0 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 128.2,117.6,111.7,-2.4$; GC/MS (EI) $201.1(\mathrm{M})^{+}, 186.1(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl[2-(4-methylphenyl)ethenyl]silane (3o) ${ }^{2}$

30

3 o (52 mg, $59 \%, \mathrm{E} / \mathrm{Z}=95: 5$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=20.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6,136.9,134.8,128.3$, 127.3, 125.4, 20.4, -2.0; GC/MS (EI) 190.1 (M) ${ }^{+}$, 175.1 (M-Me) ${ }^{+}$.
(E)-(4-fluorostyryl)trimethylsilane (3p) ${ }^{3}$

3p

3p $(45 \mathrm{mg}, 31 \%, \mathrm{E} / \mathrm{Z}=81: 19)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.43-7.40 (m, 2H), $7.04(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=20.0 \mathrm{~Hz}$, $1 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,164.0,161.6,142.5,134.8(\mathrm{~d}, J=3.0$
$\mathrm{Hz}), 129.4(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.0 \mathrm{~Hz}),-1.0 ;{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-114.0; GC/MS (EI) $194.1(\mathrm{M})^{+}, 179.1(\mathrm{M}-\mathrm{Me})^{+}$.
(E)-(4-chlorostyryl)trimethylsilane (3q) ${ }^{3}$

3q
$\mathbf{3 q}(57 \mathrm{mg}, 54 \%, \mathrm{E} / \mathrm{Z}=85: 15)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=20.0$ $\mathrm{Hz}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}){ }^{13}{ }^{\mathrm{C}} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,144.9,142.4,137.0,133.7,130.6$, 128.8, 127.7, -1.1; GC/MS (EI) 210.1 (M) ${ }^{+}$, 195.1 (M-Me) ${ }^{+}$.

(E)-(4-methoxystyryl)trimethylsilane (3r) ${ }^{5}$

3 r
3r ($79 \mathrm{mg}, 51 \%, \mathrm{E} / \mathrm{Z}=99: 1$) was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37 (d, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,143.2,131.5,127.7,126.7,114.0,55.3,-1.0$; GC/MS (EI) $206.1(\mathrm{M})^{+}$, $191.1(\mathrm{M}-\mathrm{Me})^{+}$.
(E)-trimethyl[2-(4-trifluoromethylphenyl)ethenyl]silane (3s) ${ }^{7}$

$3 s$
3s $(90 \mathrm{mg}, 49 \%, \mathrm{E} / \mathrm{Z}=92: 8)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=20 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H})$, 0.12 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6,143.2,134.6,129.0,128.0,127.0,126.9$, $124.4,0.1 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.2; GC/MS (EI) $244.1(\mathrm{M})^{+}, 229.1(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl[2-(4-nitrophenyl)ethenyl]silane (3t) ${ }^{8}$

$3 t$
$3 \mathrm{t}(52 \mathrm{mg}, 31 \%, \mathrm{E} / \mathrm{Z}=86: 14)$ was isolated as a brown oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=20.0 \mathrm{~Hz}$, 1 H), $0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,144.3,141.1,136.1,129.3,126.8$, 123.9, -1.5; GC/MS (EI) 221.1 (M) ${ }^{+}$, 206.1 (M-Me) ${ }^{+}$.

(E)-trimethyl[2-(4-trifluoromethoxyphenyl)ethenyl]silane (3u)

3u
$\mathbf{3 u}(80 \mathrm{mg}, 41 \%, \mathrm{E} / \mathrm{Z}=85: 15)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.39 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=20.0$ $\mathrm{Hz}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}) $\delta 164.1,147.8,144.0,140.9,130.0,127.4$, 126.5, 119.9, -2.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.7$; GC/MS (EI) 260.1 (M) ${ }^{+}, 245.1(\mathrm{M}-$ $\mathrm{Me})^{+}$.

(E)-trimethyl[2-(4-cyanophenyl)ethenyl]silane (3v) ${ }^{4}$

$3 v$
3v $(86 \mathrm{mg}, 57 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=20.0$ $\mathrm{Hz}, 1 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4,140.6,133.8,131.2,125.7,117.8$, 110.0, 111.0, -2.5; GC/MS (EI) 201.1 (M) ${ }^{+}$, 186.1 (M-Me) ${ }^{+}$.
(E)-(4-Tert-butylstyryl)trimethylsilane (3w) ${ }^{\mathbf{3}}$

3w
3w ($62 \mathrm{mg}, 36 \%, \mathrm{E} / \mathrm{Z}=99: 1$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 151.2,143.5,135.9,128.6,126.2,125.5,34.7,31.4,-1.0$; GC/MS (EI) $232.1(\mathrm{M})^{+}, 217.1(\mathrm{M}-\mathrm{Me})^{+}$.

(E)-trimethyl(styryl)silane (3x) ${ }^{\mathbf{3}}$

3x
$\mathbf{3 x}(44 \mathrm{mg}, 50 \%, \mathrm{E} / \mathrm{Z}=85: 15)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=20.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,138.5$, 129.7, 128.7, 128.1, 126.5, -1.0; GC/MS (EI) $176.1(\mathrm{M})^{+}, 161.1(\mathrm{M}-\mathrm{Me})^{+}$.
(E)-(3,5-Dimethylstyryl)trimethylsilane (3y) ${ }^{9}$

3y
3y ($63 \mathrm{mg}, 41 \%, \mathrm{E} / \mathrm{Z}=99: 1$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.06(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9,138.4,137.9,129.7,129.0,124.3,21.3,-1.1$; GC/MS (EI) $204.1(\mathrm{M})^{+}$, 189.1 (M-Me) ${ }^{+}$.

(E)-trimethyl[2-(2-carbomethoxyphenyl)ethenyl]silane (3z) ${ }^{8}$

$3 z$
$\mathbf{3 z}(79 \mathrm{mg}, 45 \%, \mathrm{E} / \mathrm{Z}=88: 12)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.86(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,142.0,140.0$ 132.6, 131.5, 129.8, 128.0, 126.8, 126.6, 51.5, -1.6; GC/MS (EI) $234.1\left(\mathrm{M}^{+}, 219.1(\mathrm{M}-\mathrm{Me})^{+}\right.$.

\mathbf{N}, \mathbf{N}-dibenzyl-2-chloroacetamide (4a) ${ }^{11}$

$\mathbf{4 a}(2.49 \mathrm{~g}, 91 \%)$ was isolated as a colourless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.23(\mathrm{~m}$,

6 H), 7.17 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.09 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.53 (s, 2H), 4.43 ($\mathrm{s}, 2 \mathrm{H}), 4.06$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.2,136.4,135.7,129.1,128.7,128.2,128.0,127.7,126.4$, 50.3, 48.6, 41.4; HRMS (ESI): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}+\mathrm{Na}\right]^{+}$296.0813, found 296.0823.

N -benzyl-2-chloro-N-phenyl-acetamide (4b) ${ }^{\mathbf{1 2}}$

4b
4b $(2.10 \mathrm{~g}, 81 \%)$ was isolated as a white powder; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{t}, J=4.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.19$ (t, $J=4.0 \mathrm{~Hz}, 3 \mathrm{H}$), 7.13 (t, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.95 (t, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.82$ ($\mathrm{s}, 2 \mathrm{H}$), 3.77 ($\mathrm{s}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,140.8,136.5,129.8,129.0,128.7,128.5$, 128.2, 127.7, 53.7, 42.0; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}+\mathrm{Na}\right]^{+}$282.0656, found 282.0668 .

N -benzyl-2-chloro-N-isopropylacetamide (4c) ${ }^{11}$

4c
$4 \mathbf{c}(1.70 \mathrm{~g}, 75 \%)$ was isolated as a colourless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (mixture of rotamers in ratio $1 / 0.8$, * stands for the major rotamer) $\delta 7.30-7.13\left(\mathrm{~m}, 10\left(\mathrm{H}+\mathrm{H}^{*}\right)\right), 4.73(\mathrm{t}, J=$ $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right), 4.46\left(\mathrm{~s}, 4\left(\mathrm{H}+\mathrm{H}^{*}\right)\right), 4.15(\mathrm{~s}, 1 \mathrm{H}), 4.12\left(\mathrm{~s}, 2 \mathrm{H}^{*}\right), 3.84(\mathrm{~s}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 3 H), 1.08 (d, $\left.J=8.0 \mathrm{~Hz}, 3 \mathrm{H}^{*}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,166.8,138.6,137.7$, 129.0, 128.4, 127.5, 126.8, 125.7, 49.8, 46.9, 46.3, 44.1, 42.2, 41.6, 21.5, 20.0; HRMS (ESI): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}+\mathrm{Na}\right]^{+} 248.0813$, found 248.0824.

N -benzyl-2-chloro-N-ethylacetamide (4d) ${ }^{\mathbf{1 1}}$

4d
4d ($1.80 \mathrm{~g}, 85 \%$) was isolated as a colourless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers in ratio $1 / 0.8, *$ stands for the major rotamer) $\delta 7.29-7.10\left(\mathrm{~m}, 10\left(\mathrm{H}+\mathrm{H}^{*}\right)\right), 4.52(\mathrm{~s}$, $\left.2 \mathrm{H}^{*}\right), 4.49$ (s, 2H), 4.06 ($\left.\mathrm{s}, 2 \mathrm{H}^{*}\right), 3.96(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.26-3.22\left(\mathrm{~m}, 2 \mathrm{H}^{*}\right)$, 1.11-1.08 (m, 3H*), 1.05-1.02 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,136.9,136.2$,
129.0, 128.6, 127.9, 127.8, 127.5, 126.3, 50.9, 48.0, 41.9, 41.6, 41.5, 41.2, 13.8, 12.2; HRMS (ESI): calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}+\mathrm{Na}\right]^{+}$234.0656, found 234.0666.

N -benzyl-2-chloro-N-methylacetamide (4e) ${ }^{11}$

$4 e$
4e ($1.88 \mathrm{~g}, 95 \%$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers in ratio $1 / 0.6$, * stands for the major rotamer) $\delta 7.38-7.18\left(\mathrm{~m}, 10\left(\mathrm{H}+\mathrm{H}^{*}\right)\right.$), $4.60(\mathrm{~s}, 4$ $\left(\mathrm{H}+\mathrm{H}^{*}\right)$), $4.15\left(\mathrm{~s}, 2 \mathrm{H}^{*}\right), 4.11(\mathrm{~s}, 2 \mathrm{H}), 2.99\left(\mathrm{~s}, 3 \mathrm{H}^{*}\right), 2.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,166.7,136.4,135.7,129.0,128.7,128.0,127.9,127.6,126.4,53.6,51.3,41.4,41.1$, 35.0, 34.3; HRMS (ESI): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}+\mathrm{Na}\right]^{+} 220.0500$, found 220.0509.

2-chloro-N-methy-N-(naphthalene-2-ylmethyl)acetamide (4f) ${ }^{11}$

4f
4f ($1.68 \mathrm{~g}, 68 \%$) was isolated as a colourless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers in ratio $1 / 0.5, *$ stands for the major rotamer) $\delta 7.96-7.74\left(\mathrm{~m}, 6\left(\mathrm{H}+\mathrm{H}^{*}\right)\right)$, 7.53-7.13 (m, 8(H+H*)), 5.01 ($\mathrm{s}, 4 \mathrm{H}$), $4.09\left(\mathrm{~s}, 2 \mathrm{H}^{*}\right), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.84\left(\mathrm{~s}, 3 \mathrm{H}^{*}\right),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,166.4,133.8,131.7,131.6,128.7,127.1,126.7,126.1,125.1,123.7$, 51.4, 49.4, 41.6, 41.0, 35.4, 34.9; HRMS (ESI): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}+\mathrm{Na}\right]^{+}$270.0656, found 270.0657.

2-chloro-N-methy-N-benzyl-acetamide (4g) ${ }^{12}$

$4 \mathrm{~g}(1.43 \mathrm{~g}, 78 \%)$ was isolated as a white powder; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.31(\mathrm{~m}$, 3 H), $7.20(\mathrm{t}, \mathrm{J}=4.08 .0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.3, 142.6, 130.1, 128.6, 127.0, 41.5, 38.0; HRMS (ESI): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClNO}+\mathrm{Na}\right]^{+}$ 206.0343, found 206.0349.

N-ethyl-choroacetanilide (4h) ${ }^{12}$

4h
4h (1.68 g, 85\%) was isolated as a colourless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.41(\mathrm{t}, J$ $=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=4.0,2 \mathrm{H}), 3.76-3.73(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,140.8,129.9,128.6,128.1,44.8,42.0,12.7$; HRMS (ESI): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClNO}+\mathrm{Na}\right]^{+} 220.0500$, found 220.0504.

2-chloro-N,N-dicyclohexylacetamide (4i) ${ }^{13}$

$4 i$
$4 \mathbf{i}(2.11 \mathrm{~g}, 82 \%)$ was isolated as a Brown-solid powder; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.96$ (s, $2 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.28$ $(\mathrm{m}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,58.9,56.4,43.5$, 31.2, 29.5, 26.4, 25.8, 25.1; HRMS (ESI): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{ClNO}+\mathrm{Na}\right]^{+} 280.1439$, found 280.1448 .

(E)-3-(trimethylsilanyl)-N,N-Dibenzyl-acrylamide (5a)

5a
$\mathbf{5 a}(162 \mathrm{mg}, 50 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.31-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=16.0,1 \mathrm{H}), 4.58(\mathrm{~s}$, $2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.24,146.47,136.49,136.01$, $132.38,128.14,127.84,127.66,126.93,126.67,125.94,49.26,48.02,-2.48$; HRMS (ESI): calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NOSi}+\mathrm{Na}\right]^{+} 346.1598$, found 346.1607.

(E)-3-(trimethylsilanyl)-N-Benzyl-N-phenyl-acrylamide (5b)

5b
$\mathbf{5 b}(124 \mathrm{mg}, 40 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.25 (m, 4H), 7.24-7.18 (m, 5H), 6.97 (d, $J=8.0,2 \mathrm{H}), 6.11(\mathrm{~d}, J=20.0,1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H})$, $-0.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.24,146.47,136.49,136.01,132.38,128.14$, 127.84, 127.66, 126.93, 126.67, 125.94, 49.26, 48.02, -2.48; HRMS (ESI): calculated for

(E)-3-(trimethylsilanyl)-N-Benzyl-N-isopropyl-acrylamide (5c)

5c
$\mathbf{5 c}(120 \mathrm{mg}, 43 \%, \mathrm{E} / \mathrm{Z}=67: 33)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.36-7.18 (m, 12(H+H*)), $6.49(\mathrm{~d}, J=20.0,1 \mathrm{H}), 4.95(\mathrm{t}, J=8.0,1 \mathrm{H}), 4.64-4.40\left(\mathrm{~m}, 4\left(\mathrm{H}+\mathrm{H}^{*}\right)\right)$, 1.21-1.13 (m, 12(H+H*)), $0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.6, 167.1, 146.3, 145.9, 139.9, 139.3, 135.2, 134.4, 129.0, 128.6, 127.5, 127.0, 126.4, 49.3, 46.5, 46.4, 44.8, 22.1, 20.6, -1.4; HRMS (ESI): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NOSi}+\mathrm{Na}\right]^{+} 298.1598$, found 298.1607.

(E)-3-(trimethylsilanyl)-N-Benzyl-N-ethyl-acrylamide (5d)

5d
$\mathbf{5 d}(112 \mathrm{mg}, 43 \%, \mathrm{E} / \mathrm{Z}=50: 50)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.21-7.02\left(\mathrm{~m}, 12\left(\mathrm{H}+\mathrm{H}^{*}\right)\right), 6.59(\mathrm{~d}, J=20.0,1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.99(\mathrm{t}$, $\left.J=8.04 .0,6\left(\mathrm{H}+\mathrm{H}^{*}\right)\right), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,165.2,145.4,145.1$, $136.8,136.4,132.7,132.0,127.8,127.5,127.1,126.6,126.3,125.5,49.8,47.8,40.8,40.6,13.3$, 11.7, -2.5, -2.6; HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NOSi}+\mathrm{Na}\right]^{+}$284.1441, found 284.1451.

(E)-3-(trimethylsilanyl)-N-Benzyl-N-methyl-acrylamide (5e)

5e
5e ($72 \mathrm{mg}, 30 \%, \mathrm{E} / \mathrm{Z}=50: 50$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.23-7.10 (m, 12(H+H*)), $6.61(\mathrm{t}, J=20.016 .0,1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,168.0,149.8,148.0,147.7,138.9,138.5,134.9,134.8$, $130.5,130.2,129.7,129.6,129.3,129.0,128.2,128.0,55.1,52.9,43.4,36.4,35.9,31.3,-0.06$; HRMS (ESI): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NOSi}+\mathrm{Na}\right]^{+} 270.1285$, found 270.1294 .

(E)-3-(trimethylsilanyl)-N-Methyl-N-naphthalen-2-ylmethyl-acrylamide (5f)

$5 f$
5f ($96 \mathrm{mg}, 32 \%, \mathrm{E} / \mathrm{Z}=60: 40$) was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.97(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.75-7.64\left(\mathrm{~m}, 5\left(\mathrm{H}+\mathrm{H}^{*}\right)\right), 7.40-7.09\left(\mathrm{~m}, 10\left(\mathrm{H}+\mathrm{H}^{*}\right)\right), 6.60(\mathrm{~d}, J=20.0,1 \mathrm{H})$, $4.49(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,167.9,150.0$, $148.1,135.5,135.0,134.7,134.1,133.4,132.3,130.6,130.2,130.1,129.7,128.7,127.5,127.2$, 126.7, 125.6, 125.1, 123.6, 52.7, 50.6, 36.3, 35.9, 2.6, 1.2; HRMS (ESI): calculated for $\left[^{\left.\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NOSi}+\mathrm{Na}\right]^{+}} 320.1441\right.$, found 320.1451.

(E)-3-(trimethylsilanyl)-N-Methyl-N-phenyl-acrylamide (5g)

5g
$\mathbf{5 g}(94 \mathrm{mg}, 40 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.35(\mathrm{t}, J=8.0,2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.01 \mathrm{H}), 7.11(\mathrm{t}, J=8.0,3 \mathrm{H}), 6.12(\mathrm{~d}, J=20.0,1 \mathrm{H}), 3.29(\mathrm{~s}$, $3 \mathrm{H}),-0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,145.5,143.8,134.6,129.7,127.8$, 127.5, 37.8, -1.5; HRMS (ESI): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NOSi}+\mathrm{Na}\right]^{+} 256.1128$, found 256.1139.

(E)-3-(trimethylsilanyl)-N-ethyl-N-phenyl-acrylamide (5h)

$\mathbf{5 h}(100 \mathrm{mg}, 38 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.34(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0,3 \mathrm{H}), 6.02(\mathrm{~d}, J=16.0,1 \mathrm{H}), 3.78(\mathrm{~d}$, $J=8.0,2 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}),-0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,145.3,142.2$, 135.0, 129.7, 128.6, 127.9, 44.8, -1.5; HRMS (ESI): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NOSi}+\mathrm{Na}\right]^{+}$ 270.1285 , found 270.1295 .
(E)-3-(trimethylsilanyl)-N,N-Dicyclohexyl-acrylamide (5i)

$5 i$
$\mathbf{5 i}(108 \mathrm{mg}, 35 \%, \mathrm{E} / \mathrm{Z}=99: 1)$ was isolated as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.81(\mathrm{~d}, J=20.0,1 \mathrm{H}), 6.53(\mathrm{~d}, J=20.0,1 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~d}, \mathrm{~J}=12.0,6 \mathrm{H})$, $1.49(\mathrm{~d}, J=28.0,7 \mathrm{H}), 1.17(\mathrm{~d}, J=16.0,7 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 165.7, 141.4, 135.9, 56.4, 54.6, 30.9, 29.2, 25.4, 25.2, 24.4, -2.6; HRMS (ESI): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NOSi}+\mathrm{H}\right]^{+} 308.2404$, found 308.2419 .

4. Gram-Scale Preparation of 5a

To a dried vial was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.30 equiv) and $\mathbf{4 a}(10.0 \mathrm{mmol}, 1.0$ equiv), dry dioxane (20 mL) was then added. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 1.5 h . Then TMSCHN_{2} ($15 . \mathrm{omL}, 2 \mathrm{M} / \mathrm{L}, 3.0$ equiv) was added slowly and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 hours. After cooling, the mixture was diluted with water and extracted with EA, the combined organic layer was washed with brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the filtrate was concentrated under vacuum and purified by column chromatography on silica gel to afford the corresponding $\mathbf{5 a}$ ($1.23 \mathrm{~g} 38 \%$) as a yellow oil.

5. Copies of NMR spectra

3a

-19.74
8

3a

3b

3b

3b

3c

3d

菏

2

3d

3e

3e

$3 \mathbf{3}$

| 분
8
i
i

$3 f$

$3 g$

3g

$3 g$

3h

3h

 "rivivigy

$3 i$

$3 i$

3j

ririciving ofopopo

3k

\%	6 \%	88	\sim
8	¢ ¢	\%	9
7	17	\%	-


```
31
```


$$
\begin{aligned}
& \text { N }
\end{aligned}
$$

3m

3m


```
3n
```


3n

30

$\stackrel{\stackrel{1}{\circ}}{\stackrel{1}{\circ}}$
8
i
i

30


```
Nirivir riving%
```


3p

$\stackrel{\text { ※ }}{\stackrel{\text { ® }}{1}}$

3p

3p

$3 q$

3q

3r

$\stackrel{9}{i}$

3s

3s

3s

$3 t$

> ががッロき ッか
> ぶ心がす す。

3u

3u
\qquad

$3 v$

3w

3w

3x

$3 x$

®
N
N
$\stackrel{\pi}{i}$

3y

$3 z$

68
Fi
Bi

4a

${ }_{i}^{\infty}$
N

4b

4b

ッロ
-
-

N 8
Ni
N

4d

$$
\begin{aligned}
& \text { \& } 68.5 \text { に }
\end{aligned}
$$

4d

にば心が心が心が心
$\stackrel{8}{i}$
$\$ 5$
$8, ~$
8,

$\begin{array}{ll}5 \\ i & 88 \\ i \%\end{array}$

$4 f$

4h

$4 i$

ririviriviriog T

5b

5c

5c

(

$5 f$

$5 g$

$5 g$

$\underset{\sim}{2}$
$\stackrel{8}{8}$
$=$
i
i

5h

5h

われ
Wी

$5 i$

6. neicicinc
[1] W. M. Czaplik, M. Mayer, A. J. Wangelin, ChemCatChem., 2011, 3, 135.
[2] J. McNulty, P. Das, Chem. Commun., 2008, 1244.
[3] J. R. McAtee, S. E. S. Martin, D. T. Ahneman, K. A. Johnson, D. A. Watson, Angew. Chem. Int. Ed., 2012, 51, 3663.
[4] T. Endo, F. Sasaki, H. Hara, J. Suzuki, S. Tamura, Y. Nagata, T. Lyoshi, A. Saigusa, T. Nakano, Appl. Organometal. Chem., 2007, 21, 183.
[5] M. Das, A. Manvar, M. Jacolot, M. Blangetti, R. C. Jones, D. F. O'Shea, Chem. Eur. J., 2015, 21, 8737.
[6] K. Tokmic, A. R. Fout, J. Am. Chem. Soc., 2016, 138, 13700.
[7] (a) K. Hosoi, K. Nozaki, T. Hiyama, Proc. Janpan Acad., 2002, 78, 154. (b) H. Kazushi, N. Kyoko, H. Tamejiro, Chemistry Letters, 2002, 31, 138.
[8] K. Karabelas, A. Hallberg, J. Org. Chem., 1986, 51, 5286.
[9] Z. J. Ni, T. Y. Luh, J. Org. Chem., 1988, 53, 2129.
[10] W. Shin-ichiro, S. Nobujiro, T. Yuho, Chemistry Letters, 1992, 21, 655.
[11] J. Pedroni, M. Boghi, T. Saget, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 9064-9067.
[12] E. J. Hennessy, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 12084-12085.
[13] M. C. Joshi, K. J. Wicht, D. Taylor, R. Hunter, P. J. Smith, T. J. Egan, Eur. J. Med. Chem. 2013, 69, 338-347.

