Supporting Information

Silver-Catalyzed Decarboxylative Radical Cascade Cyclization towards Benzimidazo[2,1-*a*]isoquinolin-6(5*H*)-ones

Kai Sun,^{a,#} Shi-Jun Li,^{a,#} Xiao-Lan Chen,^{a,c*} Yan Liu,^a Xian-Qiang Huang,^b Dong-Hui Wei,^{a,*} Ling-Bo Qu,^a Yu-Fen Zhao,^{a,c} and Bing Yu^{a,*}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.

^b School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China

^c The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China

E-mail: chenxl@zzu.edu.cn; donghuiwei@zzu.edu.cn; bingyu@zzu.edu.cn

Table of Contents

1. General Information	S2
2. Condition Optimization	S2-S3
3. Experimental Procedures	
4. Characterization Data for Products	
5. NMR Copies of Products	S13-S38
6. X-ray Crystallographic Data of 3a	
7. Calculational Details	S39-49

1. General Information

All the chemicals were purchased from commercial sources and used without treatment. Reactions were monitored by Thin Layer Chromatography (TLC) using silica gel F254 plates. Products were purified by column chromatography by using 200-300 mesh silica gel as the stationary phase. All the ¹H and ¹³C NMR spectra were recorded on a Bruker Ascend 400 spectrometer at 25 °C operating at 400.13 and 100.61 MHz, respectively. Proton chemical shifts δ were given in ppm using TMS as the internal standard. High-resolution mass spectra (HRMS) were obtained with 3000-mass spectrometer, using Waters Q-Tof MS/MS system (ESI).

2. Condition Optimization

We initiated our study by evaluating the model reaction of N-methacryloyl-2phenylbenzoimidazole (1a) with pivalic acid (2a) under different reaction conditions (Table S1). To our delight, the treatment of 1a with 2 equiv. of 2a in the presence of 10 mol% of AgNO₃ and 2 equiv. of $K_2S_2O_8$ in CH₃CN/H₂O (v/v = 1/1) under a N₂ atmosphere at 80 °C for 8 h, afforded a desired benzimidazo[2,1-a] isoquinolin-6(5H)-one (3a) in 62% yield (entry 1). The structure of **3a** was further confirmed by X-ray crystallography. With this intriguing result in hand, we further examined other silver catalysts including AgOAc, AgSbF₆, Ag₂CO₃ and Ag₂O under identical conditions. It was found that these silver catalysts were active for this decarboxylative cascade reaction, giving **3a** in yields of 50-58% (entries 2-5). Then various transition metals such as CuI, CuCl, CuBr, CuSO₄, Fe(NO₃)₃, FeSO₄, NiCl₂ and MnSO₄ as catalysts were surveyed, and however, no desired product was detected (entries 6-13). Therefore, AgNO₃ was selected as the catalyst for further optimization. It was observed that the yield of 3aincreased from 40% to 79% as the dosage of AgNO₃ increased from 5 mol% to 15 mol% (entries 14 and 15). The screening of oxidants showed that $K_2S_2O_8$ was the best choice (entries 16-19). The experiments from entries 20-21 indicated that no product could be produced in the absence of AgNO₃ or K₂S₂O₈. Further increasing the amount of K₂S₂O₈ to 3 equivalents improved the yield to 82% (entry 22). The screening of solvents showed that $CH_3CN/H_2O(v/v = 1:1)$ was the best choice among the solvents tested (entries 24-27). Therefore, the optimal reaction conditions were thus established as follows: 1a (0.5 mmol), 2a (1 mmol), AgNO₃ (15 mol%) and $K_2S_2O_8$ (3 equiv.) in the mixed solvent of $CH_3CN/H_2O(v/v = 1/1)$ at 80 °C for 8 h under a N₂ atmosphere.

Table S1. Optimization of the reaction conditons^a

Entry	Cat. (mol%)	Oxidant (equiv)	Solvent $(y/y=1.1)$	Yield ^b (%)
		(equiv)	(*/* 1.1)	(70)
1	$AgNO_3(10)$	$K_{2}S_{2}O_{8}(2)$	CH ₃ CN/H ₂ O	62
2	AgOAc (10)	$K_{2}S_{2}O_{8}(2)$	CH ₃ CN/H ₂ O	58
3	$AgSbF_6(10)$	$K_{2}S_{2}O_{8}(2)$	CH ₃ CN/H ₂ O	50
4	$Ag_{2}CO_{3}(10)$	$K_{2}S_{2}O_{8}(2)$	CH ₃ CN/H ₂ O	55
5	Ag ₂ O (10)	$K_{2}S_{2}O_{8}(2)$	CH ₃ CN/H ₂ O	53
6	CuI (10)	$K_{2}S_{2}O_{8}(2)$	CH ₃ CN/H ₂ O	N.D.
7	CuCl (10)	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
8	CuBr (10)	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
9	$CuSO_4(10)$	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
10	Fe(NO ₃) ₃ (10)	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
11	FeSO ₄ (10)	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
12	$NiCl_2(10)$	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
13	$MnSO_4(10)$	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
14	$AgNO_3(5)$	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	40
15	$AgNO_3(15)$	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	79
16 ^c	AgNO ₃ (15)	TBHP (2)	CH ₃ CN/H ₂ O	N.D.
17	AgNO ₃ (15)	DTBP (2)	CH ₃ CN/H ₂ O	N.D.
18	$AgNO_3(15)$	Oxone (2)	CH ₃ CN/H ₂ O	N.D.
19	AgNO ₃ (15)	O_2 (1 atm)	CH ₃ CN/H ₂ O	N.D.
20	AgNO ₃ (15)		CH ₃ CN/H ₂ O	N.D.
21	-	$K_2S_2O_8(2)$	CH ₃ CN/H ₂ O	N.D.
22	AgNO ₃ (15)	$K_2S_2O_8(3)$	CH ₃ CN/H ₂ O	82
23	AgNO ₃ (15)	$K_2S_2O_8(4)$	CH ₃ CN/H ₂ O	80
24	$AgNO_3(15)$	$K_2S_2O_8(3)$	DCE/H ₂ O	66
25	AgNO ₃ (15)	$K_2S_2O_8(3)$	DMF/H ₂ O	35
26	AgNO ₃ (15)	$K_2S_2O_8(3)$	DMSO/H ₂ O	56
27	AgNO ₃ (15)	$K_2S_2O_8(3)$	EtOH/H ₂ O	71

^{*a*}Reaction conditions: **1a** (0.5 mmol), **2a** (1 mmol), catalyst (0-20 mol%), oxidant, mixed solvent (5 mL), N₂ atmosphere, 80 °C, 8 h. TBHP = *tert*-butyl hydroperoxide, DTBP = Di-*tert*-butyl peroxide. ^{*b*}Isolated yields were given. ^cCuI, CuBr, CuCl, and CuSO₄ were tested, respectively. ^{*d*}70 wt% aqueous solution was applied.

3. Experimental procedures

General Procedure for Synthesis of Benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones (3)

N-methacryloyl-2-aryl-benzoimidazole **1** (0.5 mmol), carboxylic acid **2** (1 mmol), $K_2S_2O_8$ (3 equiv) and AgNO₃ (15 mol%) in CH₃CN/H₂O (v/v =1/1) (5 mL) stirred at 80 °C under N₂ for 8 h. The solvent was evaporated under vacuum, and the residue was quenched with water (10 mL), extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine (25 mL) and dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated in vacuo. The crude product was purified

by silica gel chromatography (petroleum ether: ethyl acetate = 10:1) to give the desired products.

Scheme S1. Control experiments

We carried out a reaction starting form *N*-methacryloyl-2-phenylimidazole (**1y**) and pivalic acid under optimized reaction conditions, as illustrated in Scheme S2a. However, we only get 23% yield of the corresponding product (**3y**), a much low yield compared with that of **3a** when compound **1a** was employed as the reactant (Scheme S2b below). For further understanding this seemingly abnormal result, we then utilized computational methods to calculate the most stable conformations of *N*-methacryloyl-2-phenylimidazole (**1y**) and **1a** as well as their corresponding radical intermediates 1y' and 1a', as shown below in Scheme S3 (the most stable geometries of **1y**, **1a** and **1y'**, **1a'** were obtained by B3LYP/DZVP). As it can be seen from Scheme S3, the most stable conformation of **1y'** renders a longer distance between radical

Scheme S2

carbon and phenyl ortho carbon, two reaction sites of further cyclization reaction, in comparison with the relatively short distance in **1a**' which should be resulted from the repulsion from the nearby α -H. Thus, it is reasonably believed that reactant *N*-methacryloyl-2-phenylimidazole (**1y**) would own less chance to fulfill the cyclization process to access the final product **3y**, compared to the use of **1a** to access the corresponding product **3a**. The conformational analysis of **1a**, **1y** and **1a'**, **1y'** shown in Scheme 3 might provide an insight to the reason why a much low yield of **3y** was obtained.

Scheme S3

4. Characterization Data for Products

5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3a)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 7.6 Hz, 1H), 8.40-8.38 (m, 1H), 7.85-7.83 (m, 1H), 7.56-7.40 (m, 5H), 2.63 (d, J = 14.4 Hz, 1H), 2.17 (d, J = 14.4 Hz, 1H), 1.71 (s, 3H), 0.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 149.8, 144.1, 142.0, 131.4, 131.2, 127.6, 127.6, 125.9, 125.5, 122.4, 119.7, 115.8, 55.3, 47.6, 33.1, 32.0, 30.8. HRMS Calcd for C₂₁H₂₃N₂O [M + H]⁺: m/z 319.1805, Found: 319.1811

5-(2,2-dimethylbutyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3b)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 7.6 Hz, 1H), 8.40-8.38 (m, 1H), 7.84-7.82 (m, 1H), 7.55-7.50 (m, 2H), 7.48-7.40 (m, 3H), 2.61 (d, J = 14.4 Hz, 1H), 2.16 (d, J = 14.4 Hz, 1H), 1.71 (s, 3H), 1.00-0.86 (m, 2H), 0.68 (t, J = 7.6 Hz, 3H), 0.48 (s, 3H), 0.36 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 173.5, 149.8, 144.1, 142.1, 131.5, 131.1, 127.6, 127.5, 125.9, 125.8, 125.5, 122.4, 119.7, 115.8, 53.1, 47.5, 36.6, 34.4, 33.2, 27.6, 26.9, 8.3. HRMS Calcd for C₂₂H₂₅N₂O [M + H]⁺: m/z 333.1961, Found: 333.1965

5-(3-hydroxy-2,2-dimethylpropyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3c)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.0 Hz, 1H), 8.39-8.37 (m, 1H), 7.83-7.81 (m, 1H), 7.57-7.53 (m, 2H), 7.50-7.41 (m, 3H), 2.94-2.84 (m, 2H), 2.69 (d, J = 14.8 Hz, 1H), 2.25 (d, J = 14.8 Hz, 1H), 1.96 (s, 1H), 1.71 (s, 3H), 0.60 (s, 3H), 0.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 149.7, 144.0, 141.9, 131.3, 127.7, 127.2, 126.0, 125.9, 125.6, 122.1, 119.7, 115.8, 71.1, 48.5, 47.4, 36.6, 33.7, 26.3, 24.8. HRMS Calcd for C₂₁H₂₃N₂O₂ [M + H]⁺: m/z 335.1754, Found: 335.1753

5-(adamantan-1-ylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3d)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 7.6 Hz, 1H), 8.41-8.39 (m, 1H), 7.85-7.83 (m, 1H), 7.52-7.49 (m, 2H), 7.48-7.40 (m, 3H), 2.50 (d, J = 14.4, 1H), 2.06 (d, J = 14.4 Hz, 1H), 1.66 (s, 3H),1.63-1.61(m, 3H), 1.42 (d, J = 12.0 Hz, 3H), 1.28 (d, J = 11.6 Hz, 3H), 1.15-1.07 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 149.8, 144.1, 142.3, 131.5, 131.1, 127.6, 125.8, 125.8, 125.5, 122.1, 119.7, 115.9, 56.2, 46.8, 43.5, 36.4, 34.2, 33.7, 28.4. HRMS Calcd for C₂₇H₂₉N₂O [M + H]⁺: m/z 397.2274, Found: 397.2277

5-(3-hydroxyadamantan-1-yl)methyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3e)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 7.6 Hz, 1H), 8.39 (d, *J* = 7.2 Hz, 1H), 7.85-7.83 (m, 1H), 7.55-7.41 (m, 5H), 2.60 (d, *J* = 14.4 Hz, 1H), 2.14 (d, *J* = 14.4 Hz, 1H), 1.86 (d, *J* = 16.0 Hz, 2H), 1.67 (s, 3H), 1.45-1.25 (m, 5H), 1.17-0.87 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 149.6, 144.1, 141.9, 131.4, 131.2, 127.8, 127.4, 126.0, 125.9, 125.6, 122.1, 119.8, 115.8, 68.3, 54.8, 51.6, 46.9, 44.1, 44.0, 41.9, 41.6, 37.7, 34.8, 33.7, 30.4, 30.4. HRMS Calcd for C₂₇H₂₉N₂O₂ [M + H]⁺: m/z 413.2224, Found: 413.2230

5-methyl-5-(4-oxoadamantan-1-yl)methyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3f)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.53-8.51 (m, 1H), 8.40-8.38 (m, 1H), 7.87-7.85 (m, 1H), 7.58-7.43 (m, 5H), 2.65 (d, *J* = 14.8 Hz, 1H), 2.26 (d, *J* = 14.8 Hz, 2H), 2.16 (d, *J* = 14.8 Hz, 1H), 1.81-1.75 (m, 2H), 1.72-1.70 (m, 2H), 1.69 (s, 3H), 1.63-1.55 (m, 2H), 1.51-1.39 (m, 3H), 1.36-1.25 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 217.3, 173.0, 149.4, 144.1, 141.4, 131.3, 128.0, 127.3, 126.2, 126.1, 125.7, 122.1, 119.9, 115.8, 53.6, 46.9, 46.3, 46.1, 44.9, 44.2, 41.7, 38.2, 38.2, 34.0, 33.8, 27.5. HRMS Calcd for C₂₇H₂₇N₂O₂ [M + H]⁺: m/z 411.2067, Found: 411.2071

5-isobutyl-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3g)

Yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 7.6, 1H), 8.40-8.38 (m, 1H), 7.84-7.82 (m, 1H), 7.54 (td, *J* = 7.6, 1.6 Hz, 1H), 7.47-7.38 (m, 4H), 2.45 (dd, *J* = 14.4, 8.4 Hz, 1H), 2.07 (dd, *J* = 14.4, 5.2 Hz, 1H), 1.68 (s, 3H), 1.33-1.25 (m, 1H), 0.61 (d, *J* = 6.8 Hz, 3H), 0.56 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 149.8, 144.1, 141.8, 131.6, 131.4, 127.6, 126.6, 125.9, 125.8, 125.5, 122.7, 119.8, 115.8, 50.5, 48.5, 31.4, 25.6, 23.9, 22.4. HRMS Calcd for C₂₀H₂₁N₂O [M + H]⁺: m/z 305.1648, Found: 305.1651

5-(2-ethylbutyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3h)

Yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.50-8.48 (m, 1H), 8.38-8.36 (m, 1H), 7.83-7.81 (m, 1H), 7.54-7.50 (m, 1H), 7.45-7.39 (m, 4H), 2.39 (dd, *J* = 14.0, 6.4 Hz, 1H), 1.98 (dd, *J* = 14.4, 4.0 Hz, 1H), 1.72 (s, 3H), 0.97-0.84 (m, 5H), 0.54 (q, *J* = 7.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 149.8, 144.1, 141.8, 131.4 (d, *J* = 13.8 Hz), 127.5, 126.6, 125.8, 125.7, 125.4, 122.9, 119.7, 115.6, 48.6, 46.4, 37.3, 29.8, 25.8,

25.2, 10.3, 10.0. HRMS Calcd for C₂₂H₂₅N₂O [M + H]⁺: m/z 333.1961, Found: 333.1966

5-(cyclopropylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3i)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.0, 1H), 8.38-8.36 (m, 1H), 7.83-7.81 (m, 1H), 7.59-7.55 (m, 1H), 7.50-7.40 (m, 4H), 2.18 (dd, *J* = 13.6, 5.2 Hz, 1H), 2.00 (dd, *J* = 13.6, 8.4 Hz, 1H), 1.77 (s, 3H), 0.17-0.06 (m, 2H), -0.04-0.10 (m, 2H), -0.20-0.24 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 150.1, 144.0, 142.0, 131.7, 131.4, 127.6, 126.3, 125.8, 125.7, 125.5, 123.3, 119.7, 115.6, 49.7, 49.5, 26.9, 6.9, 3.9, 3.7. HRMS Calcd for C₂₀H₁₉N₂O [M + H]⁺: m/z 303.1492, Found: 303.1492

5-(cyclobutylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3j)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.48-8.45 (m, 1H), 8.37-8.35 (m, 1H), 7.83-7.81 (m, 1H), 7.57-7.53 (m, 1H), 7.48-7.39 (m, 4H), 2.47 (dd, *J* = 13.6, 8.0 Hz, 1H), 2.07 (dd, *J* = 13.6, 8.0 Hz, 1H), 1.89-1.80 (m, 1H), 1.74 (s, 3H), 1.52-1.38 (m, 5H), 1.34-1.25 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 149.9, 144.0, 141.8, 131.6, 131.4, 127.6, 126.5, 125.8, 125.7, 125.5, 122.9, 119.7, 115.7, 51.3, 48.6, 32.9, 28.9, 28.5, 27.9, 18.6. HRMS Calcd for C₂₁H₂₁N₂O [M + H]⁺: m/z 317.1648, Found: 317.1654

5-(cyclopentylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3k)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.49-8.47 (m, 1H), 8.40-8.37 (m, 1H), 7.84-7.82 (m, 1H), 7.59-7.55 (m, 1H), 7.50-7.41 (m, 4H), 2.53 (dd, *J* = 13.6, 7.6 Hz, 1H), 2.19 (dd, *J* = 13.6, 7.2 Hz, 1H), 1.73 (s, 3H), 1.39-1.15 (m, 7H), 0.96-0.94 (m, 1H), 0.81-0.78 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 149.9, 144.1, 142.1, 131.6, 131.4, 127.6, 126.6, 125.9, 125.8, 125.5, 122.8, 119.7, 115.8, 49.1, 49.1, 37.5, 33.6, 32.4, 30.1, 24.9, 24.6. HRMS Calcd for C₂₂H₂₃N₂O [M + H]⁺: m/z 331.1805, Found: 331.1805

5-(cyclohexylmethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3l)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 8.0, 1H), 8.39-8.37 (m, 1H), 7.84-7.82 (m, 1H), 7.58-7.54 (m, 1H), 7.49-7.40 (m, 4H), 2.48 (dd, J = 14.4, 8.0 Hz, 1H), 2.06 (dd, J = 14.4, 4.8 Hz, 1H), 1.66 (s, 3H), 1.46-1.36 (m, 3H), 1.27-1.16 (m, 2H), 1.00-0.75 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 149.8,

144.1, 141.9, 131.6, 131.5, 127.6, 126.6, 125.9, 125.8, 125.5, 122.6, 119.7, 115.8, 48.8, 48.3, 34.9, 34.2, 32.9, 31.8, 26.0, 25.9. HRMS Calcd for C₂₃H₂₅N₂O [M + H]⁺: m/z 345.1961, Found: 345.1959

5-methyl-5-propylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3m)

White oil, ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, *J* = 8.0 Hz, 1H), 8.38-8.36 (m, 1H), 7.83-7.80 (m, 1H), 7.54 (m, 1H), 7.48-7.40 (m, 4H), 2.47-2.38 (m, 1H), 2.04-1.95 (m, 1H), 1.72 (s, 3H), 0.57 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 149.9, 144.1, 141.5, 131.8, 131.3, 127.6, 126.1, 125.8, 125.8, 125.5, 123.2, 119.8, 115.7, 50.0, 36.4, 29.7, 28.3, 9.6. HRMS Calcd for C₁₈H₁₇N₂O [M + H]⁺: m/z 277.1335, Found: 277.1341

5-methyl-5-propylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3n)

White oil, ¹H NMR (400 MHz, CDCl₃) δ 8.49-8.46 (m, 1H), 8.38-8.35 (m, 1H), 7.83-7.80 (m, 1H), 7.58-7.54 (m, 1H), 7.48-7.39 (m, 4H), 2.41-2.33 (m, 1H), 1.98-1.90 (m, 1H), 1.73 (s, 3H), 1.00-0.78 (m, 2H), 0.74 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 149.9, 144.1, 141.9, 131.8, 131.3, 127.6, 126.0, 125.8, 125.8, 125.5, 123.0, 119.8, 115.7, 49.5, 45.5, 28.6, 18.5, 14.0. HRMS Calcd for C₁₉H₁₉N₂O [M + H]⁺: m/z 291.1492, Found: 291.1497

5-methyl-5-(2-phenoxyethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (30)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.45-8.40 (m, 2H), 7.80-7.76 (m, 1H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.48-7.42 (m, 4H), 6.91 (t, *J* = 7.6 Hz, 2H), 6.70 (t, *J* = 7.2 Hz, 1H), 6.12 (d, *J* = 8.4 Hz, 2H), 3.82-3.77 (m, 1H), 3.45-3.39 (m, 1H), 3.17-3.10 (m, 1H), 2.40-2.35 (m, 1H), 1.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 157.6, 149.6, 144.0, 140.4, 131.7, 131.6, 129.1, 127.9, 126.2, 126.1, 125.8, 125.6, 123.2, 120.7, 119.8, 115.7, 113.6, 63.7, 47.0, 41.6, 29.7. HRMS Calcd for C₂₄H₂₁N₂O₂ [M + H]⁺: m/z 369.1598, Found: 369.1596

3,5-dimethyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3p)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.38-8.36 (m, 2H), 7.81 (d, *J* = 7.2 Hz, 1H), 7.43-7.36 (m, 2H), 7.29-7.25 (m, 2H), 2.61 (d, *J* = 14.4 Hz, 1H), 2.43 (s, 3H), 2.14 (d, *J* = 14.4, 1H), 1.69 (s, 3H), 0.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 150.0, 144.2, 141.9, 141.6, 131.4, 128.7, 128.0, 125.8, 125.7, 125.2,

119.8, 119.5, 115.7, 55.2, 47.5, 33.0, 32.0, 30.8, 21.9. HRMS Calcd for C₂₂H₂₅N₂O [M + H]⁺: m/z 333.1961, Found: 333.1959

3-methoxy-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3q)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 8.8 Hz, 1H), 8.33 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.39-7.31 (m, 2H), 7.00-6.95 (m, 2H), 3.84 (d, J = 2.8 Hz, 3H), 2.59 (d, J = 14.4 Hz, 1H), 2.09 (d, J = 14.4 Hz, 1H), 1.66 (s, 3H), 0.54 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 162.0, 149.9, 144.2, 144.0, 131.3, 127.8, 125.7, 125.0, 119.3, 115.6, 115.4, 113.6, 113.1, 55.5, 55.4, 47.7, 33.1, 32.0, 30.8. HRMS Calcd for C₂₂H₂₅N₂O₂ [M + H]⁺: m/z 349.1911, Found: 349.1911

3-chloro-5-methyl-5-neopentylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3r)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.4 Hz, 1H), 8.38-8.36 (m, 1H), 7.83-7.81 (m, 1H), 7.49-7.41 (m, 4H), 2.64 (d, J = 14.4 Hz, 1H), 2.12 (d, J = 14.4 Hz, 1H), 1.71 (s, 3H), 0.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 148.8, 144.0, 143.7, 137.5, 131.3, 128.2, 127.7, 127.3, 126.1, 125.8, 121.0, 119.8, 115.8, 55.3, 47.7, 33.0, 32.1, 30.8, 14.1. HRMS Calcd for C₂₁H₂₂ClN₂O [M + H]⁺: m/z 353.1415, Found: 353.1415

5-methyl-5-neopentyl-6-oxo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile (3s)

White solid, ¹H NMR (400 MHz, Chloroform-*d*) δ 8.60 (d, J = 8.0 Hz, 1H), 8.41 – 8.39 (m, 1H), 7.88 – 7.85 (m, 1H), 7.81 (s, 1H), 7.74 (dd, J = 8.0, 1.2 Hz, 1H), 7.52 – 7.47 (m, 2H), 2.69 (d, J = 14.4, 1H), 2.15 (d, J = 14.4 Hz, 1H), 1.73 (s, 3H), 0.55 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 147.7, 144.0, 142.9, 131.7, 131.4, 130.7, 126.6, 126.6, 126.4, 126.4, 120.3, 118.1, 116.0, 114.4, 55.4, 47.7, 32.9, 32.1, 30.8. HRMS Calcd for C₂₂H₂₂N₃O [M + H]⁺: m/z 344.1757, Found: 344.1760

5-methyl-5-(2-oxo-2-phenylethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3t)

Light yellow solid, ¹H NMR (400 MHz, CDCl₃) δ 8.65-8.47 (m, 1H), 8.34 (dd, J = 7.4, 1.6 Hz, 1H), 8.00-

7.76 (m, 3H), 7.52 (t, J = 7.4 Hz, 1H), 7.48-7.34 (m, 6H), 7.32 (dt, J = 5.0, 3.1 Hz, 1H), 4.29 (d, J = 18.3 Hz, 1H), 4.14 (d, J = 18.2 Hz, 1H), 1.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 173.3, 150.1, 144.1, 142.0, 135.6, 133.7, 131.7, 131.6, 128.7, 128.1, 127.6, 126.4, 125.7, 125.4, 124.5, 123.0, 119.8, 115.7, 49.3, 46.2, 30.2. HRMS Calcd for C₂₄H₁₉N₂O₂ [M + H]⁺: m/z 367.1441, Found: 367.1443

5-methyl-5-(2-oxopropyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3u)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 7.2, 1H), 8.32 (d, *J* = 7.6, 1H), 7.83 (d, *J* = 7.6, 1H), 7.46-7.37 (m, 4H), 7.27 (d, *J* = 7.6 Hz, 1H), 3.76 (d, *J* = 16.8 Hz, 1H), 3.48 (d, *J* = 16.8 Hz, 1H), 1.99 (s, 3H), 1.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.8, 173.2, 150.0, 144.0, 141.7, 131.6, 131.6, 130.0, 129.0, 127.6, 126.7, 126.3, 125.7, 125.4, 124.5, 123.0, 119.7, 115.6, 53.9, 45.9, 29.9, 29.5. HRMS Calcd for C₁₉H₁₇N₂O₂ [M + H]⁺: m/z 305.1285, Found: 305.1286

3-chloro-5-methyl-5-(2-oxo-2-phenylethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3v)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 8.8 Hz, 1H), 8.36-8.34 (m, 1H), 7.90-7.85 (m, 3H), 7.55 (t, J = 7.2 Hz, 1H), 7.49-7.40 (m, 5H), 7.33 (d, J = 1.2 Hz, 1H), 4.35 (d, J = 18.0 Hz, 1H), 4.08 (d, J = 18.0 Hz, 1H), 1.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.0, 172.6, 149.2, 144.1, 143.8, 137.7, 135.4, 133.8, 131.6, 130.1, 128.7, 128.2, 128.1, 127.8, 125.8, 125.6, 124.8, 121.8, 119.9, 115.7, 49.4, 46.2, 30.0. HRMS Calcd for C₂₄H₁₈ClN₂O₂ [M + H]⁺: m/z 401.1051, Found: 401.1055

5-methyl-5-(2-oxo-2-(p-tolyl)ethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3w)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.58-8.56 (m, 1H), 8.37-8.35 (m, 1H), 7.89 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.48-7.40 (m, 4H), 7.36-7.33 (m, 1H), 7.22 (d, J = 8.0 Hz, 2H), 4.30 (d, J = 18.0 Hz, 1H), 4.15 (d, J = 18.1 Hz, 1H), 2.40 (s, 3H), 1.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.6, 173.3, 150.1, 144.5, 144.0, 142.0, 133.2, 131.7, 131.6, 129.3, 128.1, 127.5, 126.4, 125.6, 125.3, 124.4, 123.0, 119.7, 115.6, 49.2, 46.2, 30.2, 21.6. HRMS Calcd for C₂₅H₂₁N₂O₂ [M + H]⁺: m/z 381.1598, Found: 381.1601

5-(2-(4-chlorophenyl)-2-oxoethyl)-5-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3x)

¹H NMR (400 MHz, CDCl₃) δ 8.58-8.56 (m, 1H), 8.37-8.35 (m, 1H), 7.90-7.88 (m, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.48-7.40 (m, 4H), 7.36-7.28 (m, 3H), 4.26 (d, *J* = 18.4 Hz, 1H), 4.08 (d, *J* = 18.4 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.0, 173.2, 150.1, 144.1, 141.8, 140.1, 133.9, 131.7, 129.5, 129.0, 127.6, 126.4, 125.7, 125.4, 124.4, 123.1, 119.8, 115.6, 49.2, 46.2, 30.1. HRMS Calcd for C₂₄H₁₈ClN₂O₂ [M + H]⁺: m/z 401.1051, Found: 401.1056

6-methyl-6-neopentylimidazo[2,1-a]isoquinolin-5(6H)-one (3y)

White oil, ¹H NMR (400 MHz, CDCl₃) δ 8.35-8.22 (m, 2H), 7.65-7.20 (m, 4H), 2.51 (d, *J* = 14.4 Hz, 1H), 2.04 (d, *J* = 14.4 Hz, 1H), 1.59 (s, 3H), 0.60 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 163.9, 145.1, 133.83, 133.82, 128.5, 127.3, 127.26, 127.25, 123.9, 53.4, 46.3, 33.4, 32.0, 30.8. HRMS Calcd for C₁₇H₂₁N₂O [M + H]⁺: m/z 269.1648, Found: 269.1646

5-neopentyl-5-phenylbenzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one (3z)

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.55 (dd, J = 8.0, 1.6 Hz, 1H), 8.30-8.27 (m, 1H), 7.86-7.83 (m, 1H), 7.50-7.37 (m, 4H), 7.28 – 7.20 (m, 5H), 7.15 (dd, J = 8.0, 1.2 Hz, 1H), 3.30 (d, J = 13.6 Hz, 1H), 2.55 (d, J = 13.6 Hz, 1H), 0.63 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 149.8, 145.0, 144.1, 142.0, 131.5, 131.2, 130.2, 128.8, 127.9, 127.5, 127.0, 126.0, 125.7, 125.6, 123.3, 119.7, 115.9, 55.4, 51.5, 31.9, 31.1. HRMS Calcd for C₂₆H₂₅N₂O [M + H]⁺: m/z 381.1961, Found: 381.1966

5. NMR Copies of Products

88,88,804 88,485 88,4415 88,4415 88,4415 88,4415 88,4415 88,4415 88,4415 88,4415 88,4415 88,4415 88,4415 84,445 44,44544,455 44,45544,455 44,45545,455 44,455 44,45545,455 44,455 44,45545,455 44,455 44,45545,455645,4556 44,455645,455645,4556 44,455645,455645656 44,

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 ò

S18

S21

S24

R 8490 R 8470 R 8460 R 8470 R 8460 R 8470 R 8460 R 8470 R 8460 R 8470 R 84700 R 847000 R 8470000 R 847000000000000000000000000000000000

6. Crystal data and structure refinement for compound 3a.

Empirical formula	$C_{21}H_{22}N_2O$
Formula weight	318.40
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pbca
a/Å	16.5024(4)
b/Å	11.1420(2)
c/Å	19.3013(5)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3548.93(14)
Z	8
$\rho_{cale}g/cm^3$	1.192
µ/mm ⁻¹	0.575
F(000)	1360.0
Crystal size/mm ³	$0.21\times0.2\times0.15$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	9.164 to 135.468
Index ranges	$\text{-19} \le h \le 19, \text{-10} \le k \le 13, \text{-22} \le l \le 14$
Reflections collected	13149
Independent reflections	$3164 [R_{int} = 0.0242, R_{sigma} = 0.0169]$
Data/restraints/parameters	3164/13/221
Goodness-of-fit on F ²	1.070
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0468, wR_2 = 0.1327$
Final R indexes [all data]	$R_1 = 0.0564, wR_2 = 0.1428$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.18

7. Calculational Details

All the theoretical calculations in the study were performed using Gaussian16 program package¹. All the geometries were optimized at the B3LYP²/DZVP³ level, and the solvent effect was utilized the polarizable continuum model (PCM) in water solvent.⁴ And the harmonic vibrational frequency calculations were performed at the same level to confirm the local minima and transition state.

The solution translational entropy correction has been calculated with THERMO

program, ⁵ which is based on the free volume that a solute molecule could move along three axes within the cavity.

References:

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi ,R.; Normand, J.; Raghavachari, K.; Rendell, A. P.;Burant, J. C.;Iyengar, S. S.;Tomasi,J.; Cossi, M.; Millam, J. M.; Klene,M.;Adamo,C.;Cammi,R.;Ochterski, J. W.; Martin, R. L.;Morokuma,K.;Farkas,O.;Foresman, J. B.; Fox, D. J. *Gaussian16*, Gaussian, Inc., Wallingford, CT, **2016**.

[2] (a) Lee, C.; Yang, W.; Parr, R.G.; Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789; (b) Becke, A.D. Density-Functional Thermochemistry. III. The role of Exact Exchange, *J. Chem. Phys.* 1993, *98*, 5648-5652.

[3] (a) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Optimization of Gaussian-Type Basis-Sets for Local Spin-Density Functional Calculations .1. Boron Through Neon, Optimization Technique and Validation, Can. J. Chem. 1992, 70, 560–571. (b) Sosa, C.; Andzelm, J.; Elkin, B. C.; Wimmer, E.; Dobbs, K. D.; Dixon, D. A. A Local Density Functional Study of the Structure and Vibrational Frequencies of Molecular Transition-Metal Compounds, *J. Phys. Chem.* 1992, 96, 6630–6636.

[4] Scalmani, G.; Frisch, M. J. Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General formalism, *J. Chem. Phys.***2010**, *132*, 114110-24.

[5] Fang, D.-C. THERMO; Beijing Normal University, Beijing, People's Republic of China, 2013.

Species	E(a.u.)	S(cal/mol/K)	G(a.u.)
1 a	-841.04855	104.2	-840.81182
5	-157.81299	54.0	-157.71473
TS1	-998.85905	137.4	-998.51283
6	-998.90193	129.3	-998.54781
TS2	-998.87699	123.2	-998.52137
7	-998.89617	121.6	-998.53787
TS2'	-998.84741	124.9	-998.49324
7'	-998.86688	125.2	-998.51095

7.1 The energies, entropies and Gibbs free energies of Stationary Points

7.2 Coordinates of Stationary Points

1a			
C	-1.70165	-0.43418	-0.02832
C	-1.40539	-1.80902	0.10625
C	-2.43421	-2.75819	0.18458
C	-3.75091	-2.30208	0.10847
C	-4.03506	-0.93006	-0.05177
C	-3.01843	0.02746	-0.13013
C	0.51806	-0.82162	-0.00107
Н	-2.20350	-3.81457	0.29215
Н	-4.57124	-3.01250	0.16511
Н	-5.06929	-0.60364	-0.11934
Н	-3.26098	1.07504	-0.27032
N	-0.44519	0.20570	-0.09292
Ν	-0.02815	-2.00703	0.13388
C	1.97609	-0.59975	0.05187
С	2.54393	0.46220	0.77770
C	2.82261	-1.52502	-0.58454
C	3.93190	0.60065	0.85507
Н	1.90951	1.17038	1.30261
C	4.21048	-1.38010	-0.51086
Н	2.38724	-2.34964	-1.14127
C	4.77007	-0.31624	0.20779
Н	4.35854	1.42140	1.42568
Н	4.85414	-2.09653	-1.01468
Н	5.84964	-0.20422	0.26638
C	-0.21155	1.53741	-0.56056
0	0.68073	1.75186	-1.36609
C	-1.08637	2.61345	0.00706
C	-1.48613	3.58259	-0.83290
Н	-2.10974	4.40350	-0.48866
Н	-1.21246	3.56767	-1.88423
C	-1.41042	2.59436	1.48431
Н	-0.49380	2.67650	2.07947
Н	-2.05714	3.43720	1.73931
Н	-1.91151	1.67261	1.79205
5			
C	1.43745	-0.39179	0.01769
C	0.00008	0.00002	-0.17487
Н	1.65422	-1.37390	-0.41943
Н	2.12259	0.34032	-0.42646
Н	1.69990	-0.45905	1.08972

C	0.27026	1 44055	0.017(0
	-0.3/936	1.44055	0.01769
C	-1.05807	-1.04872	0.01770
Н	-1.35831	1.66595	-0.42207
Η	-0.44760	1.70263	1.08973
Η	0.35999	2.11964	-0.42385
Η	-1.25167	-1.23930	1.08959
Η	-2.01554	-0.74742	-0.42412
Н	-0.76414	-2.00921	-0.42238
TS	1		
C	2.06031	-1.30829	-0.05277
C	3.27973	-0.60302	0.07794
C	4.49946	-1.29604	0.12285
C	4.46605	-2.68674	0.01323
C	3.24434	-3.37653	-0.14620
C	2.02110	-2.70121	-0.18740
C	1.73331	0.90603	0.01997
H	5.43768	-0.75790	0.22973
Н	5.39447	-3.25098	0.04241
Н	3.25203	-4.45912	-0.24080
Н	1.09141	-3.24485	-0.32394
N	1.06350	-0 32104	-0.07046
N	3 03865	0.76407	0 13157
	1 05505	2 21/12	0.075/1
	0.16261	2.21413	0.075240
	1 67/50	2.37237	-0 52100
	1.0/439	3.32/33	-0.32189
	-0./3343	3.03039	0.82380
	-0.64170	1.555/1	1.25096
	1.07837	4.58883	-0.45458
H	2.61747	3.19437	-1.04400
C	-0.13946	4.75815	0.21699
H	-1.69355	3.78149	1.35822
H	1.56263	5.43922	-0.92773
H	-0.60249	5.74013	0.27003
C	-0.28820	-0.53246	-0.56589
0	-0.64710	0.09429	-1.55947
C	-1.10330	-1.50996	0.16849
C	-2.16858	-2.05597	-0.49307
H	-2.72492	-2.87748	-0.05514
H	-2.31714	-1.85691	-1.54889
C	-0.80499	-1.83352	1.61715
Н	-1.50069	-2.59304	1.98234

Н	0.21038	-2.20914	1.77039
Н	-0.91654	-0.94693	2.25277
C	-3.94575	0.58280	-0.12891
C	-4.36513	-0.85778	-0.08676
Н	-3.23634	0.82173	0.66988
Н	-3.49441	0.85166	-1.08822
Н	-4.82510	1.23425	0.01606
C	-5.09337	-1.40550	-1.28204
C	-4.73337	-1.42120	1.25802
Н	-5.11784	-2.50092	-1.28195
Н	-6.14265	-1.06374	-1.27393
Н	-4.65279	-1.06390	-2.22437
Н	-5.70028	-1.00402	1.58830
Н	-4.84849	-2.51004	1.23367
Н	-3.99619	-1.16250	2.02512
6			
C	2.02561	-1.26242	-0.06560
C	3.22845	-0.53475	0.09656
C	4.45982	-1.20691	0.15123
C	4.45292	-2.59618	0.02116
C	3.24688	-3.30699	-0.16743
C	2.01244	-2.65376	-0.21829
C	1.64942	0.94011	0.04172
Н	5.38676	-0.65452	0.28142
Н	5.39096	-3.14389	0.05702
Н	3.27701	-4.38771	-0.27739
Н	1.09617	-3.21370	-0.37766
N	1.01096	-0.29819	-0.07783
N	2.95746	0.82534	0.16663
C	0.93897	2.23124	0.08904
C	-0.29178	2.38156	0.75255
C	1.53709	3.35742	-0.50635
C	-0.91571	3.63109	0.81030
Н	-0.75244	1.53518	1.25384
C	0.90902	4.60373	-0.45086
Н	2.48895	3.24572	-1.01701
C	-0.32059	4.74500	0.20585
H	-1.86238	3.73487	1.33398
Н	1.37733	5.46420	-0.92179
Н	-0.80848	5.71530	0.24943
C	-0.33696	-0.53703	-0.57436

0	-0.66829	-0.00764	-1.64458
C	-1.19903	-1.38880	0.20817
C	-2.47928	-1.87062	-0.41083
Н	-2.63529	-2.90342	-0.07399
Н	-2.35550	-1.88966	-1.49778
C	-0.81499	-1.87480	1.57085
Н	-1.66150	-1.79780	2.25917
Н	-0.56049	-2.94359	1.53046
Н	0.03522	-1.33936	1.99531
C	-4.13166	-1.03783	1.39160
C	-3.81546	-1.08852	-0.11549
Н	-4.13252	-2.03848	1.83958
Н	-3.41775	-0.41551	1.94106
Н	-5.12611	-0.60449	1.54918
C	-3.75691	0.34405	-0.67648
C	-4.93844	-1.86620	-0.83452
Н	-3.55266	0.34336	-1.75188
Н	-4.71620	0.84932	-0.51251
Н	-2.97951	0.94108	-0.18996
Н	-5.90303	-1.36721	-0.68752
Н	-4.75316	-1.92688	-1.91306
Н	-5.02701	-2.88806	-0.44791
TS	2		
C	2.45259	0.12385	-0.04190
C	2.72810	1.36219	-0.67045
C	3.96514	1.58039	-1.29368
C	4.89833	0.54186	-1.27325
C	4.60794	-0.68916	-0.64722
C	3.37963	-0.92203	-0.01901
C	0.72031	1.54859	0.10080
Н	4.18172	2.52857	-1.77836
Н	5.86652	0.68118	-1.74692
Н	5.35779	-1.47580	-0.64732
Н	3.16317	-1.86560	0.46789
N	1.13868	0.24447	0.43256
N	1.63872	2.22337	-0.55281
C	-0.60087	2.00669	0.50435
C	-1.21761	1.34549	1.63387
C	-1.32000	2.91758	-0.26874
C	-2.56626	1.71865	1.95597
Н	-0.58219	1.09611	2.48206

C	-2.64983	3.22767	0.05088
Н	-0.84670	3.36238	-1.13973
C	-3.26945	2.60910	1.15965
Н	-3.02812	1.30491	2.84793
Н	-3.20330	3.93676	-0.55791
Н	-4.29505	2.86547	1.41374
C	0.38263	-0.75833	1.10344
0	0.98028	-1.62719	1.73305
C	-1.10478	-0.65987	1.03499
C	-1.75627	-0.66386	-0.34562
Н	-1.17831	-0.01190	-1.00614
Н	-2.74489	-0.19851	-0.24436
C	-1.79317	-1.41051	2.15375
Н	-2.87445	-1.25818	2.11163
Н	-1.59964	-2.48642	2.08710
Н	-1.43198	-1.08601	3.13516
C	-2.36178	-1.62668	-2.55813
C	-1.95230	-2.01465	-1.11848
Н	-3.27682	-1.02250	-2.56284
Н	-1.57390	-1.04898	-3.05518
Н	-2.55033	-2.52353	-3.15931
C	-0.65006	-2.83613	-1.17838
C	-3.08467	-2.87522	-0.51911
Н	-0.34290	-3.19305	-0.19022
Н	-0.78777	-3.71604	-1.81758
Н	0.17536	-2.24970	-1.59977
Н	-4.01448	-2.30090	-0.43194
Н	-3.28493	-3.73536	-1.16877
Н	-2.83725	-3.26759	0.47011
7			
C	2.50231	-0.12172	0.28821
C	2.83416	1.04302	-0.44758
C	4.15036	1.24834	-0.88819
C	5.10238	0.27386	-0.58057
C	4.75591	-0.88144	0.14984
C	3.44669	-1.10182	0.59796
C	0.72082	1.23101	-0.02128
Н	4.41202	2.13973	-1.45176
Н	6.12976	0.40576	-0.90975
Н	5.52082	-1.62067	0.37201
Н	3.18087	-1.99020	1.15665

N	1.12862	0.00745	0.56373
Ν	1.72054	1.85359	-0.62485
C	-0.63615	1.65277	0.10614
C	-1.48864	0.90276	1.10494
C	-1.11842	2.78542	-0.55216
C	-2.94383	1.28631	1.02688
Н	-1.14908	1.28978	2.08741
C	-2.45238	3.17597	-0.43135
Н	-0.44225	3.34483	-1.19279
C	-3.36576	2.38448	0.34042
Н	-3.65687	0.70913	1.60819
Н	-2.81132	4.05397	-0.96022
Н	-4.41733	2.66053	0.36037
C	0.28254	-0.96883	1.09808
0	0.74266	-2.04925	1.44837
C	-1.21677	-0.64363	1.22146
C	-2.03820	-1.59440	0.27206
Н	-3.09170	-1.41715	0.51807
Н	-1.81527	-2.60011	0.64477
C	-1.61094	-1.06836	2.66522
Н	-2.67448	-0.88469	2.83953
Н	-1.41962	-2.13118	2.82079
Н	-1.04210	-0.50478	3.41189
C	-2.51659	-0.43742	-1.99388
C	-1.93937	-1.67664	-1.28322
Н	-3.54487	-0.23883	-1.67272
Н	-1.92523	0.46157	-1.80818
Н	-2.53119	-0.60053	-3.07841
C	-0.50553	-1.93975	-1.78709
C	-2.81070	-2.89477	-1.67926
Н	-0.04807	-2.79314	-1.27474
Н	-0.52292	-2.16553	-2.85961
Н	0.14770	-1.07213	-1.65686
Н	-3.84482	-2.77432	-1.33562
Н	-2.83205	-3.01221	-2.76856
Н	-2.41880	-3.82401	-1.24940
TS2	2'		
C	-0.09981	1.71305	-0.71543
C	-0.96442	2.60572	-0.10621
C	-0.46739	3.87544	0.28129
C	0.91620	4.08567	0.11061

С	1.77986	3.14156	-0.47002
С	1.29991	1.86039	-0.92870
С	-1.99790	0.68247	-0.16512
Н	-1.10026	4.62839	0.74147
Н	1.33429	5.04263	0.41448
Н	2.82145	3.40586	-0.63102
Н	1.77323	1.44507	-1.81726
Ν	-0.69442	0.46245	-0.69812
Ν	-2.17029	1.94675	0.16776
С	-3.02310	-0.35943	-0.04803
С	-3.01679	-1.50177	-0.87025
С	-4.06646	-0.19065	0.88539
С	-4.03284	-2.45543	-0.75740
Н	-2.22600	-1.63868	-1.59963
С	-5.07621	-1.14672	0.99521
Н	-4.07173	0.68923	1.52151
С	-5.06347	-2.28359	0.17408
Н	-4.02133	-3.33089	-1.40150
Н	-5.87249	-1.00890	1.72214
Н	-5.85136	-3.02756	0.25996
С	0.28654	-0.55930	-0.41113
0	0.05307	-1.74738	-0.51066
С	1.60320	0.06468	0.04205
С	2.88089	-0.53435	-0.53842
Н	3.58587	0.30014	-0.65466
Н	2.64972	-0.87231	-1.55572
С	1.56315	0.46256	1.50887
Н	1.53786	-0.42040	2.15811
Н	2.44875	1.04987	1.76587
Н	0.67958	1.06372	1.74347
С	4.41090	-1.19039	1.43457
С	3.68702	-1.68358	0.16240
Н	5.00488	-0.29108	1.23275
Н	3.72038	-0.96245	2.24990
Н	5.09586	-1.96555	1.79810
С	2.81436	-2.90471	0.50608
C	4.76628	-2.11980	-0.85611
Н	2.31331	-3.30034	-0.38261
Н	3.43812	-3.70137	0.92962
Н	2.03939	-2.66200	1.23928
Н	5.40231	-2.90437	-0.43040

Н	4.31344	-2.51542	-1.77269
Н	5.41363	-1.27986	-1.13572
7'			
C	-0.11114	1.61802	-0.65850
C	-1.01697	2.58244	-0.31035
C	-0.51002	3.87974	0.01178
C	0.91198	3.98552	0.11252
C	1.80743	2.95325	-0.12347
C	1.35349	1.61330	-0.66226
C	-2.06307	0.65934	-0.21414
Н	-1.15335	4.71406	0.27244
Н	1.32115	4.94603	0.41946
Н	2.87344	3.13708	-0.01632
Н	1.75003	1.50285	-1.68611
N	-0.70542	0.38474	-0.54476
N	-2.25756	1.96147	-0.09481
C	-3.10487	-0.36338	-0.08222
C	-2.96942	-1.63901	-0.66162
C	-4.28961	-0.05030	0.61597
C	-3.99599	-2.58027	-0.54184
Н	-2.06848	-1.89305	-1.20943
C	-5.30985	-0.99431	0.73398
Н	-4.39730	0.93255	1.06455
C	-5.16763	-2.26414	0.15591
Н	-3.88118	-3.56021	-0.99793
Н	-6.21584	-0.74268	1.27933
Н	-5.96352	-2.99869	0.24847
C	0.29820	-0.56116	-0.13565
0	0.08210	-1.73149	0.08655
C	1.64375	0.22172	0.06923
C	2.87633	-0.45260	-0.60614
Н	3.57331	0.36960	-0.81152
Н	2.53818	-0.79363	-1.59308
C	1.74906	0.44909	1.59414
Н	1.77355	-0.49856	2.13573
Н	2.65536	1.01199	1.82878
Н	0.89409	1.02650	1.96178
C	4.60031	-1.09935	1.20144
C	3.74749	-1.59363	0.01026
Н	5.14816	-0.18429	0.94619
Н	4.00334	-0.89784	2.09357

Н	5.33885	-1.86309	1.47192
C	2.94633	-2.83939	0.43375
C	4.72462	-2.01225	-1.11644
Н	2.35105	-3.23303	-0.39644
Н	3.63525	-3.62799	0.76033
Н	2.25978	-2.63016	1.25765
Н	5.41016	-2.79043	-0.76206
Н	4.18530	-2.41056	-1.98379
Н	5.33024	-1.16384	-1.45713