Supporting Information for

Synthesis of high melting point TiN mesocrystal powders by a metastable state strategy

Maoqiao Xiang, ${ }^{a}$ Miao Song, ${ }^{\text {ab }}$ Qingshan Zhu, ${ }^{* a b}$ Yafeng Yang, ${ }^{* a}$ Shaofu Li, ${ }^{a}$ Chaoquan Hu, ${ }^{\text {a }}$ Pengpeng Lv, ${ }^{\text {a }}$ Feng Pan ${ }^{\text {a }}$ and $\mathrm{Yu} \mathrm{Ge}{ }^{a}$

${ }^{\text {a }}$ State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100190, PR China
${ }^{\mathrm{b}}$ University of Chinese Academy of sciences, Beijing 100049, PR China
*Corresponding author: Qingshan Zhu; E-mail: qszhu@ipe.ac.cn; Tel:+86-01062536108; Fax: +86-010-62536108;
*Corresponding author: Yafeng Yang; E-mail: yfyang@ipe.ac.cn; Tel: +86-01082544907; Fax: +86-010-82544907.

I. Preparing the metastable $\mathbf{T i C l}_{\mathbf{2}}$ powders

The Ti powder (38 um, purity 99.8%) and TiCl_{4} (purity 99.9%) were bought from Xing Rong Yuan Technology Co., Ltd. Beijing, China and Macklin Inc. Shanghai, China. A fluidized bed process was employed to prepare the metastable TiCl_{2} powder (Fig.S1.a). This is because the fluidized bed process has the advantage of high heat efficiency and mass transfer property and is suitable for mass production. Firstly, the Ti powders $(6.0 \mathrm{~g})$ were put in the fluidized bed. Secondly, Ar was used to wash the fluidized bed $(\mathrm{Ar}=300 \mathrm{ml} / \mathrm{min}, 40 \mathrm{~min})$ for eliminating air at about $150{ }^{\circ} \mathrm{C}$. Then, the temperatures of the TiCl_{4} container and the fluidized bed (Fig.S1) were increased to $70^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$, respectively. Meanwhile, the flow velocity of Ar was $600 \mathrm{ml} / \mathrm{min}$. After 3 hours the black TiCl_{2} powders were obtained.

Fig.S1. (a) Schematic diagram of preparing TiCl_{2} precursor by fluidized bed process.
(b) Schematic diagram of synthetic process of TiCl_{2}.

However, the synthesized TiCl_{2} precursors were TiCl_{2} and Ti mixtures (Fig.S2.a). The Ti powders were uniformly covered by the TiCl_{2} film (Fig.S2.b and c). This is because the $\mathrm{TiCl}_{2}(\mathrm{~s})$ formed on the surface of $\mathrm{Ti}(\mathrm{s})$ powder at early stage acted as the
barrier for further reaction between $\mathrm{TiCl}_{4}(\mathrm{~g})$ and $\mathrm{Ti}(\mathrm{s})$ (Fig.S2.a.2). However, our design idea is based on the gaseous $\mathrm{TiCl}_{2}(\mathrm{~g})$ to synthesize TiN powders. The vapor pressure of $\mathrm{Ti}(\mathrm{s})$ is much lower than that of $\mathrm{TiCl}_{2}(\mathrm{~s})$. Hence, the residual Ti cores in the TiCl_{2} powders have little influence on the TiN synthesis.

Fig.S2. (a) XRD pattern of the synthesized black TiCl $_{2}$ powders; (b) SEM image of the Ti particle before reaction; (c.1) and (c.1) SEM of images of the synthesized black
TiCl_{2} particle; (c.3) EDS pattern of the TiCl_{2} powder.

II. Synthesizing the TiN mesocrystal powders

The synthesized TiCl_{2} powders were transferred in to a special quartz crucible located in a tube furnace (Fig. S3). The solid state $\mathrm{TiCl}_{2}(\mathrm{~s})$ powders were sublimated into gas state $\mathrm{TiCl}_{2}(\mathrm{~g})$ and transported to the reaction zones. Meanwhile, the metastable gaseous $\mathrm{TiCl}_{2}(\mathrm{~g})$ could release fresh Ti atoms by its disproportionate reaction or react with nitrogen sources directly to form TiN powders. The synthesis temperatures were varied from $750{ }^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$. The synthesis time was 30 minutes. Different nitrogen sources (ammonia gas $\left(\mathrm{NH}_{3}\right)$ and nitrogen $\left(\mathrm{N}_{2}\right)$) were investigated.

Fig.S3. Schematic diagram of preparing TiN mesocrystal powders.

III. The phase analysis and elemental analysis

The elemental analysis were detected by the field emission scanning electron microscopy (FESEM, Semicon, JSM-7001F) equipped with an energy dispersive spectroscopy (EDS) detector, and the results are shown in Fig.S4. The samples were coated by a thin Pt layer ($20 \mathrm{~mA}, 30$ seconds) in order to obtain a better conductive surface. The N element, Ti element, and Cl element were detected in all samples, and the content of Cl element decreased as the temperature increased. The phase compositions of all samples in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system and $\mathrm{TiCl}_{2}-\mathrm{N}_{2}$ system were identified using an X'Pert PRO X-ray diffractometer (XRD, PANalytical, the Netherlands) with the $\mathrm{Cu} \mathrm{K} \alpha(1.542 \AA)$ radiation in the range 2θ from 10° to 90° with a scanning speed of $1^{\circ} \mathrm{min}^{-1}$, and the results are shown in Fig.S5. The peaks fitting, phase identification and refinement of XRD profile were examined by PANalytical X'Pert HighScore Plus software. The diffraction peaks are indexed well to a facecentered cubic (FCC) structure with space group of Fm-3m (JCPDS Card No. 381420). No other diffraction peaks are detected, indicating the high purity of TiN. The intensities of peaks increased with increasing temperature. The average crystallite size of TiN powders were calculated using Debye-Scherrer formula, ${ }^{1}$ i.e. $D=\frac{0.9 \lambda}{\beta \cos \theta}$, where, D and λ are the crystallite size and the wavelength of $\mathrm{Cu}-\mathrm{K} \alpha$ radiation, respectively. θ is the Bragg diffraction angle, and β is the full-width-at-half-maximum (FWHM) of the peaks in radians. The crystallite sizes of the TiN powders are shown in table S1. The crystallite sizes o increased from 28.45 nm to 63.41 nm as the temperature increased from $750{ }^{\circ} \mathrm{C}$ to $900{ }^{\circ} \mathrm{C}$ in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system.

Fig.S4 The EDS results of the synthesized TiN powders in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system at different temperatures: (a) $750^{\circ} \mathrm{C}$, (b) $800^{\circ} \mathrm{C}$, (c) $850^{\circ} \mathrm{C}$, (d) $900^{\circ} \mathrm{C}$.

Fig.S5 (a) The XRD patterns of the synthesized TiN powders in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system from $750^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$; (b) the XRD patterns of the synthesized TiN powders in the $\mathrm{TiCl}_{2}-\mathrm{N}_{2}$ system from $750^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$.

Table S. 1. Crystallite size of the obtained samples in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ and $\mathrm{TiCl}_{2}-$ N_{2} system from $750^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$		$750{ }^{\circ} \mathrm{C}$	$800{ }^{\circ} \mathrm{C}$	$850{ }^{\circ} \mathrm{C}$	$900{ }^{\circ} \mathrm{C}$
$\mathrm{D}(\mathrm{nm})$	$\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$	28.45	38.65	54.82	63.41
	$\mathrm{TiCl}_{2}-\mathrm{N}_{2}$	22.13	33.74	47.25	56.29

IV. Microstructure and specific surface area characterization of obtained TiN powders

Microstructures of all samples were characterized by the field emission scanning electron microscopy (FESEM, Semicon, JSM-7001F). The sizes of the obtained TiN powders were measured by Nano Measurer 1.2 software. All transmission electron microscopy (TEM, 80-200kV/JEM-2100PLUS, Japan) samples were prepared by placing a drop of a solution contained TiN powders onto a carbon coated copper grid. The TEM images were analyzed by the Digital Microgaph software (Ganta, USA). The orientations and morphologies of 2 to 15 nm particles were identified by the fast Fourier transform (FFT) patterns of high resolution transmission electron microscopy (HRTEM) lattice images. Specific surface areas of the obtained samples were determined by nitrogen physical sorption BET measurements using AUTOSORB-IQ-XR-C (Quantachrome, USA) device. The results are shown in Table S2.

Table S.2. Specific surface areas of the obtained samples.

Temperatur e	$\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$-xAr systems	
	$x=0$	$x=2$
$750^{\circ} \mathrm{C}$	31.24	36.25
$800^{\circ} \mathrm{C}$	23.15	25.96
$850^{\circ} \mathrm{C}$	17.34	21.45
$900^{\circ} \mathrm{C}$	16.59	18.75

V. The thermodynamic calculation and analysis

The thermodynamic calculation in this experiment was conducted by HSC Chemistry 6.0 software (Outokumpu Research Oy, Finland). In theory, the metastable TiCl_{2} can be converted into $\mathrm{Ti}, \mathrm{TiCl}_{3}$ and TiCl_{4} by itself disproportionation in a certain range of temperature. Meanwhile, the TiCl_{3} and TiCl_{4} can also be reduced to TiCl_{2} by Ti powders or H_{2}. And each of them can be nitrided by NH_{3} or N_{2} with H_{2} to
form TiN. In addition, the NH_{3} can be decomposed into N_{2} and H_{2}. Hence, there are 17 possible reaction equations (Eqs.) in the system (Table S.3).

Table S.3. The possible reactions in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system.

Chemical reaction equation	Numbers
$\mathrm{TiCl}_{2(g)}+\mathrm{H}_{2(g)}=T i_{(s)}+2 \mathrm{HCl}_{(g)}$	1
$\mathrm{TiCl}_{3(g)}+3 / 2 \mathrm{H}_{2(g)}=T i_{(s)}+3 \mathrm{HCl}_{(g)}$	2
$\mathrm{TiCl}_{3(g)}+1 / 2 \mathrm{H}_{2(\mathrm{~g})}=\mathrm{TiCl}_{2(g)}+\mathrm{HCl}_{(g)}$	3
$\mathrm{TiCl}_{4(g)}+2 \mathrm{H}_{2(g)}=T i_{(s)}+4 \mathrm{HCl}_{(g)}$	4
$\mathrm{TiCl}_{4(g)}+\mathrm{H}_{2(\mathrm{~g})}=\mathrm{TiCl}_{2(g)}+2 \mathrm{HCl}_{(g)}$	5
$\mathrm{TiCl}_{4(\mathrm{~g})}+1 / 2 \mathrm{H}_{2(g)}=\mathrm{TiCl}_{3(\mathrm{~g})}+2 \mathrm{HCl}_{(g)}$	6
	7
$\mathrm{TiCl}_{2(g)}=1 / 2 T i_{(s)}+1 / 2 \mathrm{TiCl}_{4(g)}$	8
$\mathrm{TiCl}_{3(\mathrm{~g})}=1 / 2 \mathrm{TiCl}_{2(\mathrm{~g})}+1 / 2 \mathrm{TiCl}_{4(\mathrm{~g})}$	9
$\mathrm{TiCl}_{3(\mathrm{~g})}=1 / 4 T i_{(s)}+3 / 4 \mathrm{TiCl}_{4(g)}$	10
$\mathrm{NH}_{3(\mathrm{~g})}=3 / 2 \mathrm{H}_{2(g)}+1 / 2 \mathrm{~N}_{2(g)}$	11
$\mathrm{TiCl}_{2(g)}+\mathrm{NH}_{3(g)}=\mathrm{TiN}_{(s)}+2 \mathrm{HCl}_{(g)}+1 / 2 \mathrm{H}_{2(g)}$	12
$\mathrm{TiCl}_{3(\mathrm{~g})}+\mathrm{NH}_{3(g)}=\mathrm{TiN}_{(s)}+3 \mathrm{HCl}_{(g)}$	13
$\mathrm{TiCl}_{4(g)}+4 / 3 \mathrm{NH}_{3(g)}=\mathrm{TiN}_{(s)}+4 \mathrm{HCl}_{(g)}+1 / 6 N_{2(g)}$	14
$T i_{(s)}+1 / 2 N_{2(g)}=\operatorname{TiN}_{(s)}$	15
$T i_{(s)}+\mathrm{NH}_{3(\mathrm{~g})}=\operatorname{TiN}_{(s)}+3 / 2 \mathrm{H}_{2(g)}$	16
$\mathrm{TiCl}_{2(g)}+1 / 2 \mathrm{~N}_{2(g)}+\mathrm{H}_{2(g)}=\mathrm{TiN}_{(s)}+2 \mathrm{HCl}_{(g)}$	17

Fig. S6 shows Gibbs free energy ($\Delta \mathrm{G}$) variations and equilibrium constant (K) variations of the 17 possible reactions. From the point of view of thermodynamics, the reaction with small $\Delta \mathrm{G}$ and big K is the feasible reaction. The Eq. 11 shows negative $\Delta \mathrm{G}$ and positive K , implying that the NH_{3} can be decomposed into N_{2} and H_{2}. In order to verify this reaction, the reaction tail gas of $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system from $750{ }^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ was monitored by hydrogen detector. And we found that the hydrogen indeed existed in all process. Hence, the hydrogen also plays a role in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system
for synthesizing TiN powders. The Eqs. (1) to (6) have big postive $\Delta \mathrm{G}$ and very small K , indicating that the $\mathrm{TiCl}_{2}(\mathrm{~g}), \mathrm{TiCl}_{3}(\mathrm{~g})$ and $\mathrm{TiCl}_{4}(\mathrm{~g})$ can hardly be reduced by H_{2}. The Eqs. (7) and (8) show more negative $\Delta \mathrm{G}$ values and bigger K values than the Eqs. (9) and (10), indicating that the conversion of $\mathrm{TiCl}_{2}(\mathrm{~g})$ into fresh $\mathrm{Ti}(\mathrm{s})$ is relatively feasible pathway $\left(\mathrm{TiCl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ti}(\mathrm{s})+\mathrm{TiCl}_{3}(\mathrm{~g}), \mathrm{TiCl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ti}(\mathrm{s})+\mathrm{TiCl}_{4}(\mathrm{~g})\right)$ than the conversion of $\mathrm{TiCl}_{3}(\mathrm{~g})$. Hence, the $\mathrm{TiCl}_{4}(\mathrm{~g})$ and $\mathrm{TiCl}_{3}(\mathrm{~g})$ by-products are formed inevitably in this system. For the reaction (11) to (17), they show negative $\Delta \mathrm{G}$ and positive K , implying that the fresh $\mathrm{Ti}(\mathrm{s}), \mathrm{TiCl}_{2}(\mathrm{~g}), \mathrm{TiCl}_{3}(\mathrm{~g})$, and $\mathrm{TiCl}_{4}(\mathrm{~g})$ can be nitrided by NH_{3} or N_{2} to form TiN. The nitridation reactions of Ti(s) (Eqs. 15 and 16) show the very negative $\Delta \mathrm{G}$ and the biggest K , indicating that the $\mathrm{Ti}(\mathrm{s}) \rightarrow \mathrm{TiN}(\mathrm{s})$ reactions are the most feasible reactions. Meanwhile, the Eqs. 12 and 17 show the second low negative $\Delta \mathrm{G}$ and the second big K , indicating that the $\mathrm{TiCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{TiN}(\mathrm{s})$ reactions are the second feasible reactions. In addition, it is well known that the pure TiN can only be synthesized at least $1000{ }^{\circ} \mathrm{C}$ in the $\mathrm{TiCl}_{4}(\mathrm{~g})-\mathrm{N}_{2}-\mathrm{H}_{2}$ system. Hence, based on the calculation results, the reaction orders can be describes as: $\mathrm{Ti}(\mathrm{s}) \rightarrow \mathrm{TiN}>$ $\mathrm{TiCl}_{2} \rightarrow \mathrm{TiN}>\mathrm{TiCl}_{3} \rightarrow \mathrm{TiN}>\mathrm{TiCl}_{4} \rightarrow \mathrm{TiN}$. It is worth to mention that the reactions between the fresh $\mathrm{Ti}(\mathrm{s})$ and $\mathrm{TiCl}_{4}(\mathrm{~g}), \mathrm{TiCl}_{3}(\mathrm{~g})$ have not been taken into account because the fresh $\mathrm{Ti}(\mathrm{s})$ from the disproportionation can be consumed immediately by NH_{3} or N_{2}. Therefore, the possible synthesis pathways in the $\mathrm{TiCl}_{2}(\mathrm{~g})-\mathrm{NH}_{3}$ system can be divided in to two parts: $\mathrm{TiCl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ti}(\mathrm{s}) \rightarrow \mathrm{TiN}(\mathrm{s}), \mathrm{TiCl}_{2}(\mathrm{~g}) \rightarrow \mathrm{TiN}(\mathrm{s})$.

(4)
1\cdots-2TiCl}(\textrm{g})+\mp@subsup{\mathbf{H}}{2}{}(\textrm{g})=\mathbf{Ti}(\textrm{s})+2\textrm{HCl}(\textrm{g}
1\cdots-2TiCl}(\textrm{g})+\mp@subsup{\mathbf{H}}{2}{}(\textrm{g})=\mathbf{Ti}(\textrm{s})+2\textrm{HCl}(\textrm{g}
2\cdots..-TiCl}(\textrm{g})+3/2\mp@subsup{\textrm{H}}{2}{}(\textrm{g})=\textrm{Ti}(\textrm{s})+3\textrm{HCl}(\textrm{g}
2\cdots..-TiCl}(\textrm{g})+3/2\mp@subsup{\textrm{H}}{2}{}(\textrm{g})=\textrm{Ti}(\textrm{s})+3\textrm{HCl}(\textrm{g}
3\cdots-TiCl,(g)+1/2H2(g)=TiCl (g)+HCl(g)
3\cdots-TiCl,(g)+1/2H2(g)=TiCl (g)+HCl(g)
. . - TiCl(g) +2H_(g)=Ti(s)+4HCl(g)
. . - TiCl(g) +2H_(g)=Ti(s)+4HCl(g)
5\cdots - TiCl_(g)+\mp@subsup{H}{2}{\prime}(\textrm{g})=\mp@subsup{\textrm{TiCl}}{2}{(g)}+2\textrm{HCl}(\textrm{g})
5\cdots - TiCl_(g)+\mp@subsup{H}{2}{\prime}(\textrm{g})=\mp@subsup{\textrm{TiCl}}{2}{(g)}+2\textrm{HCl}(\textrm{g})
6\cdots-TiCl
6\cdots-TiCl
7---TiCl}(\textrm{g})=1/3\textrm{Ti}(\textrm{s})+2/3\mp@subsup{\textrm{TiCl}}{3}{}(\textrm{g}
7---TiCl}(\textrm{g})=1/3\textrm{Ti}(\textrm{s})+2/3\mp@subsup{\textrm{TiCl}}{3}{}(\textrm{g}
8---TiCl
8---TiCl
9---TiCl,}(\textrm{g})=1/2\mp@subsup{\textrm{TiCl}}{2}{(g)}+1/2\mp@subsup{\textrm{TiCl}}{4}{(g)
9---TiCl,}(\textrm{g})=1/2\mp@subsup{\textrm{TiCl}}{2}{(g)}+1/2\mp@subsup{\textrm{TiCl}}{4}{(g)
10--- -TiCl,
10--- -TiCl,
11-}\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=3/2\mp@subsup{\textrm{H}}{2}{(g)
11-}\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=3/2\mp@subsup{\textrm{H}}{2}{(g)
12-TiCl2}(\textrm{g})+N\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=\mathbf{TiN(g)}+2\mathbf{HCl}(\textrm{g})+1/2\mp@subsup{\textrm{H}}{2}{}(\textrm{g}
12-TiCl2}(\textrm{g})+N\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=\mathbf{TiN(g)}+2\mathbf{HCl}(\textrm{g})+1/2\mp@subsup{\textrm{H}}{2}{}(\textrm{g}
13--TiCl,}(\textrm{g})+\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=\mathbf{TiN(s)}+3\mathbf{3Cl}(\textrm{g}
13--TiCl,}(\textrm{g})+\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=\mathbf{TiN(s)}+3\mathbf{3Cl}(\textrm{g}
14-TiCl}(\textrm{g})+4/3\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=\textrm{TiN}(\textrm{s})+4\textrm{HCl}(\textrm{g})+1/6N,(g
14-TiCl}(\textrm{g})+4/3\mp@subsup{\textrm{NH}}{3}{}(\textrm{g})=\textrm{TiN}(\textrm{s})+4\textrm{HCl}(\textrm{g})+1/6N,(g
15-Ti(s)+1/2N2(g)= TiN(s)
15-Ti(s)+1/2N2(g)= TiN(s)
16-Ti(s)+NH,
16-Ti(s)+NH,
17-}\mp@subsup{\textrm{TiCl}}{2}{(g)+1/2N2
17-}\mp@subsup{\textrm{TiCl}}{2}{(g)+1/2N2

Fig. S6. Gibbs free energy variations (a) and the equilibrium constant variations (b) of the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system at different temperatures. (c) The 17 possible reactions in the $\mathrm{TiCl}_{2}-\mathrm{NH}_{3}$ system.

VI. The crystal structure and surface energy of TiN

TiN is FCC interstitial compound with NaCl structure (Fig.S7). For FCC structured metals, such as Ag, Au, the surface energies (γ) can be roughly expressed by the following Eq.: ${ }^{2}$
$\gamma=\frac{1}{2} N_{b} \varepsilon \rho_{a}$
where the N_{b} is the number of the broking bonds, ε is the bond energy, a is the cell parameters, and ρ_{a} is the atomic planar density. The faces with the lowest surface energy are the $\{111\}$ facets, $\gamma\{111\}=3.36\left(\varepsilon / a^{2}\right)<\gamma\{100\}=4\left(\varepsilon / a^{2}\right)<\gamma\{110\}=$ $4.24\left(\varepsilon / a^{2}\right) .{ }^{3}$ For FCC NaCl , the faces with the lowest surface energy are the $\{100\}$ facets because of its ionic bond. ${ }^{3}$ However, the bond structures of TiN are more
complicated than that of NaCl and Ag as the bonds are combination of ionic, covalent, and metallic contribution. ${ }^{4}$ At present, the faces with the lowest surface energy in TiN are not well known. ${ }^{3,5,6}$ The $\{111\}$ planes of TiN are the exchange layers of pure Ti and pure N , which possess 2 Ti or N atoms (Fig. S7.a and c). The $\{100\}$ planes of TiN possess 2 Ti atoms and 1 N atoms (Fig. S7.d and e). It has been reported that the growth rate of $\{111\}$ planes is lower than that of $\{100\}$ planes in the $\mathrm{TiCl}_{4}-\mathrm{NH}_{3}$ system. ${ }^{3}$ Based on the Wulff's rule, crystal faces with high surface energies exhibit the fastest growth rates. ${ }^{7,8}$ Hence, it is reasonable to predict that the faces with the lowest surface energy in TiN are the $\{111\}$ facets.

Fig.S7. (a) Schematic diagram of FCC structured TiN (grey balls represent Ti atoms, and deep red balls represent N atoms). (b) The expansion view of Ti1~Ti6 octahedron with $8\{111\}$ facets. (c) Schematic diagram of (111) plane. (d) and (e)

Schematic diagrams of (100) plane and (200) plane, respectively.

Fig.S8. The SEM images of truncated octahedra obtained from $\mathrm{TiCl}_{2(\mathrm{~g})}-\mathrm{NH}_{3}-\mathrm{Ar}$ system at $850^{\circ} \mathrm{C}(\mathrm{a}$ and b$)$ and $900^{\circ} \mathrm{C}(\mathrm{c}$ and d$)$.

Fig.S9. TEM images (1), SAED patterns (insets), and HRTEM images (2) of the powders with octahedron shape. (a) The rough octahedron powder synthesized at 850 ${ }^{\circ} \mathrm{C}$, (b) and (c) the smooth octahedron synthesized at $900^{\circ} \mathrm{C}$.

Fig.S10. Schematic diagram of the nanooctahedra oriented attachment by sharing the apex along [100] axes.

Fig.S11. Schematic diagram of 5 nanooctahedra oriented attachment by sharing the apex and $\{111\}$.

VII. References

1 J. S. Lee, J. M. Cha, H. Y. Yoon, J. K. Lee, Y. K. Kim, Scientific Reports, 2015, 5, 12135.

2 Z. L. Wang, J. Phys. Chem. B, 2000, 104, 1153-1175.
3 H. E. Cheng. M. H. Hon, J. Appl. Phys., 1996, 79, 8047-8053.

4 A. Neckel, The Physics and Chemistry of Carbides; Nitrides and Borides, edited by R. Freer (Kluwer Academic, Boston), 1990, 485-511.

5 J. Pelleg, L. Z. Zenvin, S. Lungo, Thin Solid Films, 1991, 197,117-128.
6 C. Quaeyhaegens, G. Knuyt, J. D’Haen, L. M. Stals, Thin Solid Films, 1995, 258, 170-173.

7 J. X. Fang, B. J. Ding, H. Gleiter, Chem. Soc. Rev., 2011, 40, 5347-5360.
8 M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys., 2006, 8, 3271-3287.

