< Electronic supplementary information (ESI)>

Adsorption of anthracene substitutes into suprachannels: bulk vs included guests

Daseul Lee,^a Dongwon Kim,^a Haeri Lee,^a Tae Hwan Noh,^b Young-A Lee^b and Ok-Sang Jung*^a

^aDepartment of Chemistry, Pusan National University, Pusan 46241, Korea

^bDepartments of Chemistry and Chemistry Education, Chunbuk National University, Jeonju 54896,

Korea

Refinements of structures with the SQUEEZE routine in *PLATON*

For $[Ag_3L_2](OTf)_3 \cdot 4CH_3OH \cdot 2CHCl_3$, one of the three counteranions and solvate molecules in the voids were highly disordered and were impossible to refine using conventional discrete-atom model. The terminal pyridyl groups combined with the amide moiety can rotate freely through the single bond, and thus, they seem to induce the statistical disorder of the structure. Therefore, the residual electron density was treated as diffuse contributions using the SQUEEZE of the PLATON software and located a series of voids.

For [Ag₃L₂](OTf)₃·4CH₃OH·2CHCl₃,

_platon_squeeze_void_nr

_platon_squeeze_void_average_x

_platon_squeeze_void_average_y

_platon_squeeze_void_average_z

_platon_squeeze_void_volume

_platon_squeeze_void_count_electrons

_platon_squeeze_void_content

- 1 -0.003 -0.003 -0.006 9497 2507 ''
- 2 0.500 -0.002 0.250 121 30''
- 3 0.500 0.002 0.750 116 30''
- 4 0.000 0.498 0.250 121 30''
- 5 0.000 0.502 0.750 116 30''

_platon_squeeze_void_probe_radius 1.20

_platon_squeeze_details ?

Table S1. Fluorescence lifetime (nm) of 9,10-H₂ANT and 9,10-(EtO)₂ANT in 9,10-H₂ANT- \subset [Ag₃L₂](OTf)₃·4CH₃OH·2CHCl₃, 9,10-(EtO)₂ANT \subset [Ag₃L₂](OTf)₃·4CH₃OH·2CHCl₃, and 9,10-H₂ANT·9,10-(EtO)₂ANT \subset [Ag₃L₂](OTf)₃·4CH₃OH·2CHCl₃ in the solid-state at room temperature.

	λ_{em}	$ au_1$	τ_2	τ_3	$ au_{m}$
9,10-H ₂ ANT \subset [Ag ₃ L ₂](OTf) ₃ ·4CH ₃ OH·2CHCl ₃	409 nm	0.81	3.7	12	7.81
9,10-(EtO) ₂ ANT \subset [Ag ₃ L ₂](OTf) ₃ ·4CH ₃ OH·2CHCl ₃	450 nm	2.3	12.2	78	13
9,10-H ₂ ANT·9,10-(EtO) ₂ ANT \subset [Ag ₃ L ₂](OTf) ₃ ·4CH ₃ OH·2CHCl ₃	406 nm	0.66	2.66	7.8	3.31
	450 nm	2.9	14	90	16

Fig. S1. ¹H NMR spectra (in Me₂SO- d_6) of L (a) and [Ag₃L₂](OTf)₃·4CH₃OH·2CHCl₃ (b), indicating that the complex is fully dissociated in Me₂SO.

Fig. S2. FT-IR spectra of L (a) and $[Ag_3L_2](OTf)_3 \cdot 4CH_3OH \cdot 2CHCl_3$ (b).

Fig. S3. TGA (black line) and DSC (blue) curves of $[Ag_3L_2]$ (OTf)₃·4CH₃OH·2CHCl₃. Weight loss: calcd, 10.9%; found, 9.4% (2CHCl₃); calcd, 5.5%; found, 5.3% (4CH₃OH); dec. temp. of skeleton: 271.5 °C.

Fig. S4. Coordination views: Ball-and-stick (a) and ORTEP (b).

Fig. S5. Crystal structure of $[Ag_3L_2](OTf)_3 \cdot 4CH_3OH \cdot 2CHCl_3$: (a) packing structure of 2D channels, (b) top views and (c) side views.

Fig. S6. Crystal structure of the triflate anions bridge between two amide groups.

Fig. S7. Solid-state excitation spectra (dashed line) and emission spectra (solid line) of $AS \subset [Ag_3L_2](OTf)_3 \cdot 4CH_3OH \cdot 2CHCl_3$. a) ANT; b) 9,10-H₂ANT; c) 9,10-Br₂ANT; d) 9,10-Cl₂ANT; e) 9,10-(ClMe)₂ANT; f) 9,10-Me₂ANT; g) 9,10-(NC)₂ANT; h) 9,10-(EtO)₂ANT.