Structural and Photodynamic Properties of the Anti-Cancer Drug Irinotecan in Aqueous Solutions of Different pHs

Maria Rosaria di Nunzio,^a Yasmin Douhal,^{b≠} Juan Angel Organero,^a Abderrazzak Douhal^{a*}

^aDepartamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain

^bFacultad de Farmacia, Universidad de Castilla-La Mancha, Paseo de los Estudiantes, S/N, 02071 Albacete, Spain.

[#]Present address: Hospital Universitario de Getafe, Carretera de Toledo, km 12.5, 28905, Getafe (Madrid), Spain.

*corresponding author: Abderrazzak.Douhal@uclm.es

Phone number: +34-925-265717

Figure S1. UV-visible absorption spectra of camptothecin (CPT) in aqueous solutions as a function of pH. The $S_0 \rightarrow S_1$ absorption bands of neutral and cationic species are marked as N and C, respectively. Data at pH = 1.1 and 6.0 are from Ref. 40.

Determination of $pK_a^*(S_1)$:

The plot of the fluorescence intensities vs pH at 433 and 610 nm, where C1 or C2 – respectively – mainly emit, is presented in Figure S2.

Figure S2. Fluorescence intensity changes of C1 (\blacksquare , $\lambda_{em} = 433$ nm) and C2 (\bullet , $\lambda_{em} = 610$ nm) structures with the pH of the medium.

The excited-state pK_a (pK_a^*) was obtained by determining the pH of the point of intersection between the two linear curves as shown in Figure S2 (black dashed lines). To determine this point, we solved the linear equations of the four points closest to the junction at each curve (S1):

$$0.74811x - 0.59666 = -0.72711x + 1.79605$$
(S1)

Where

$$x = \frac{2.39271}{1.47522} \tag{S2}$$

Therefore,

 $pK_{a}^{*} = 1.62$

Figure S3. Emission spectra of IRT in acidic aqueous solutions (pH = 1.11-2.61). The excitation wavelength is at 400 nm.

Correction of the Emission Spectra in the 11–2.61 pH range:

At low concentrations (absorbance < 0.1), the fluorescence intensity approaches a linear expression:

$$F_{\lambda} = k I_0(\log \varepsilon lc) = K lc$$
(S3)

where F_{λ} is the fluorescence intensity at a given wavelength of excitation, k' is a rate constant that takes into account the fluorescence quantum yield, ε is the extinction coefficient at the excitation wavelength, l is the optical path, and c is the concentration of the fluorophore.

Taking into account Equation S3 for diluted aqueous IRT solutions, we corrected the emission spectra of the drug in the 1.11–2.61 pH range by Equation S4:

$$F_{\lambda}^{corr}(pH) = F_{\lambda} \times \left(A_{2.61}^{371} / A_{pH}^{371}\right)$$
(S4)

where $F_{\lambda}^{corr}(pH)$ is the corrected F_{λ} at a given pH, while $A_{2.61}^{371}$ and A_{pH}^{371} are the absorbance values at 371 nm at pH 2.61 and at the given pH, respectively. The corrected emission spectra in the 1.11–2.61 pH range are shown in Figure S4:

Figure S4. Corrected emission spectra of IRT in acidic aqueous solutions (pH = 1.11 - 2.61). The excitation wavelength is at 371 nm.

Picosecond to Nanosecond Time-Resolved Measurements

Figure S5. Normalized (to the maximum of intensity) magic-angle emission decay of IRT in aqueous solution at pH = 2.61 observing at 630 nm and fitting to a monoexponential (A) or bi-exponential function including a 100 ps- (B) or 3 ns- (C) rise time. The residual distribution is also shown for each fit. IRF is the instrumental response function (~70 ps). The excitation wavelength is at 371 nm.

Figure S6. Normalized (to the maximum of intensity) magic-angle emission decay of IRT in aqueous solution at pH 1.60 observing at 600 nm. IRF is the instrumental response function (~70 ps). The excitation wavelength is at 433 nm.

pH = 1.11									
λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%					
400		99.7		0.3					
450		95		5					
475		67		33					
500	1.3	(-)5	4.6	95					
550		(-)37		63					
600		(-)40		60					
630		(-)40		60					

Irinotecan in	water at	different	pH value	es(Exc =	371 nm)
---------------	----------	-----------	----------	----------	---------

pH = 1.29										
λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%						
400		99.5		0.5						
450		96		4						
475		69		31						
500	1.5	(-)1	4.6	99						
550		(-)39		61						
600		(-)42		58						
630		(-)43		57						

]	pH = 1.55	5]	pH = 1.72	2	
λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%	λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%
400		99		1	400		98		2
450		96		4	450		95		5
475		73		27	475		77		23
500	2.0	9	4.6	91	500	2.3	22	4.7	78
550		(-)40		60	550		(-)39		61
600		(-)44		56	600		(-)44		56
630		(-)45		55	630		(-)45]	55

		pH = 1.95	5]	$\mathbf{pH}=2.20$)	
λem/nm	τı/ns	A1/%	τ2/ns	A2/%	λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%
400		98		2	400		96		4
450		96		4	450		95		5
475		82		18	475		86		14
500	2.7	41	4.7	59	500	2.9	57	4.7	43
550		(-)36		64	550		(-)29		71
600	1	(-)43	1	57	600	1	(-)41	1	59
630		(-)44		56	630	1	(-)43	1	57

]	pH = 2.40)]	pH = 2.61	l	
λ _{em} /nm	τ_1/ns	A1/%	τ2/ns	A2/%	λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%
400		95		5	400		93		7
450		94		6	450		93		7
475		88		12	475		89		11
500	3.1	68	4.8	32	500	3.2	78	4.8	22
550		(-)15		85	550		28		72
600		(-)37		63	600		(-)23		77
630]	(-)40]	60	630		(-)29]	71

]	pH = 2.84	l I		
λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%	λen
400		92		8	4
450		92		8	4
475		90		10	4
500	3.2	83	4.9	17	5
550		57		43	5
600		18		82	6
630	1	0.4	1	99.6	6

pH = 3.01										
λ _{em} /nm	τ_1/ns	A1/%	τ_2/ns	A2/%						
400		91		9						
450		90		10						
475		89		11						
500	3.2	86	4.9	14						
550		72		28						
600		51		49						
630		41		59						

]	pH = 3.56	Ó]	pH = 4.06	6	
λ _{em} /nm	τı/ns	A1/%	τ _N /ps	A2/%	λ _{em} /nm	τı/ns	A1/%	τ _N /ps	A2/%
400		95		5	400		93		7
450		95		5	450		93		7
475		95		5	475		94		6
500	3.5	95	800	5	500	3.6	94	800	6
550		95		5	550		95		5
600		96	1	4	600	1	95	1	5
630		96		4	630		94	1	6

	pH = 4.56]	pH = 5.13	3	
λ _{em} /nm	τ_1/ns	A1/%	τ _N /ps	A2/%		λ _{em} /nm	τı/ns	A1/%	τ _N /ps	A2/%
400		89		11		400		87		13
450		89		11		450		87		13
475		89		11		475		86		14
500	3.8	88	800	12		500	3.8	85	800	15
550		85		15		550		82		18
600		82	1	18		600	1	79		21
630]	77]	23		630]	75]	25

]	pH = 6.01	l]	pH = 6.56	6	
λ _{em} /nm	τ_1/ns	A1/%	τ _N /ps	A2/%	λ _{em} /nm	τ_1/ns	A1/%	τ _N /ps	A2/%
400		87		13	400		88		12
450		87		13	450		88		12
475		85		15	475		87		13
500	3.8	84	812	16	500	3.8	86	810	14
550		81		19	550		84		16
600		76		24	600		81		19
630		74		26	630		78		22

]	pH = 7.00)]	pH = 9.40	6	
λ _{em} /nm	τ_1/ns	A1/%	τ _N /ps	A2/%	λ _{em} /nm	τ_1/ns	A1/%	τ _N /ps	A2/%
400		89		11	400		85		15
450		89	-	11	450		85		15
475		89		11	475		84		16
500	3.8	89	810	11	500	3.9	82	813	18
550		89		11	550		79		21
600		88		12	600		76	1	24
630		86		14	630		74		26

Tables S1-S18. Values of fluorescence time constants (τ_i) and normalized (to 100) pre-
exponential factors (A _i) of fitting decay functions for IRT in water solution ($pH = 1.11-$
9.46) at different emission wavelengths (λ_{em}). The excitation wavelength is at 371 nm.

The Debye-Smoluchowski Model

Estimation of the Dielectric Constant

The dielectric constant of each acidic solution was obtained from literature data.¹

Estimation of the Proton Diffusion Coefficient

The proton diffusion coefficient D_{μ^+} is estimated using the Nernst equation:

$$D_{H^{+}} = RT\mu_{H^{+}} / F^{2}$$
(S3)

where μ_{H^+} is the proton mobility, R is the ideal gas constant, and F is the Faraday constant.

Estimation of the Proton Mobility

The proton mobility was estimated from electrochemical data on equivalent conductance for HCl at several concentrations at 25 °C (concentration (eq dm⁻³))² and number of transferred protons in water.³⁻⁷

Estimation of the Diffusion Constant for C1*

The diffusion constants of C1*, D_{C1*} , was evaluated from the Stokes-Einstein relationship, Equation S4:

$$D = \frac{k_B T}{6\pi\eta R} \tag{S4}$$

where η is the viscosity of the solution. In pure water its value is 0.35×10^{-5} cm² s⁻¹. It was scaled to its value in HCl solutions (HCl-S) using the viscosity ratio η_{H_2O}/η_{HCl-S} (the data on the viscosities of the HCl solutions were estimated from Ref. 8).

The kinetic Equations Extracted for the $1.11 \le pH \le 1.95$ Regime

$$\frac{d[C1^*]}{dt} = -\left\{\frac{1}{\tau_{C1}} + k_q[H^+] + k_{DPT}^{C1^*}[H^+]\right\}[C1^*]$$
(S5)

$$\frac{d[C2^*]}{dt} = k_{DPT}^{C1^*}[H^+][C1^*] - \frac{1}{\tau_{C2}}[C2^*]$$
(S6)

where $1/\tau_{C1}$ and $1/\tau_{C2}$ are the rate constants for the no-quenched emission of C1* and C2*, respectively.

The variation of [C1*] and [C2*] with time is expressed as:

$$[C1^*] = [C1^*]_0 e^{-t/\tau_1}$$
(S7)

where τ_1 is the fluorescence lifetime from ps experiments.

$$[C2^*] = \frac{[C1^*]_0 k_{DPT}^{C1^*}[H^+]}{k_{DPT}^{C1^*}[H^+] + k_q [H^+] + \frac{1}{\tau_{C1}} - \frac{1}{\tau_{C2}}} [e^{-l/\tau_{C2}} - e^{-l/\tau_1}]$$
(S8)

From Equation (S8), k_{DPT}^{C1*} can be finally evaluated as:

$$k_{DPT}^{C1^*} = \left(\frac{1}{\tau_1} - \frac{1}{\tau_{C1}} - k_q [H^+]\right) [H^+]^{-1}$$
(S9)

References

- G. J. Janz and R. P. T. Tomkins, *Nonaqueous Electrolytes Handbook*; Plenum Press: New York, 1973.
- 2. B. B. Conway, *Electrochemical Data*; New York: Elsevier Publishing Co., 1952.
- 3. S. Cukierman, *Biophys. J.*, 2000, **78**, 1825–1834.
- 4. D. Marx, M. E. Tuckerman, J. Hutter and M. Parrinello, *Nature*, 1999, **397**, 601–604, and reference therein.
- 5. D. Laage, and J. T. Hynes, *Science*, 2006, **311**, 832–835.
- 6. D. Laage and J. T. Hynes, J. Phys. Chem. B, 2008, 112, 14230–14242.
- J. M. Headrick, E. G. Diken, R. S. Walters, N. I. Hammer, R. A. Christie, J. Cui, E. M. Myshakin, M. A. Duncan, M. A. Johnson and K. D. Jordan, *Science*, 2005, 308, 1765–1769.
- 8. B. R. Bresiau and I. F. Miller, J. Phys. Chem., 1970, 74, 1056–1061.