Design tri-branched multiple-site SO₂ capture materials

Chenchen Li^a, Dongmei Lu^b, and Chao Wu^{*a}

^aFrontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
^bDepartment of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
*<u>corresponding.chaowu@mail.xjtu.edu.cn</u>

Supporting Information

Contents

Table S1	Calcul	lated sequentia	ll SO ₂ bindin	g energies o	of reported	anions		3
Table	S2	Calculated	sequential	SO_2	binding	energies	of	selected
anions		4						
Table S3	Detail	ed simulated c	apacities of s	selected ani	ons			4
Figure S	1 Other	tri-branched	species studie	ed in this w	ork			5
Figure S	2 Confi	igurations of se	elected anion	s and their	sequential	SO ₂ absorpti	ons	5
Figure S	3 Line	chart of calcul	ated sequenti	ial SO ₂ bind	ling energi	es of the stuc	lied anio	ns6
Figure S	4 Stack	ked column pl	ot of calcula	ted sequen	tial SO ₂ bi	nding energi	es of the	studied
anions								6
Figure S	5 Confi	igurations of th	ne sequential	SO ₂ absorp	otions using	g TIA		7
Figure	S6	Various	stable	configurati	ons of	TAEA	and	SO_2
complex	es		7					
Figure S	7 The f	first binding ei	nergy of stud	lied anions	and SO ₂ v	ersus the NE	O orbita	l energy
of the lo	ne pair	of the reacting	N atom				•••••	9
Figure S	8 The f	irst binding er	nergy of selec	cted anions	and $SO_2 v$	ersus the NE	SO orbita	ıl energy
of the lo	ne pair	of the reacting	N or S atom	1				9
Figure S	S9 Mul	tiple-site inter	ractions in t	he optimiz	zed structu	res based o	n Tetz	and NO
dimers								10
Figure S	10 Mu	ltiple-site inte	ractions in t	he optimiz	ed structur	es based on	TAEA	and NO
dimers								10
Reference	e							11

TableS1. Calculated sequential SO ₂ binding energies (kJ mol ⁻¹) of reported anions.							
Sequential SO_2 interacting positions with Tetz are labeled by numbers in red.							
E _b	1	2	3	4	5	Ref	
1 N N 2 N=N 3 4	-89.3	-59.9	-39.7	-34.4		1	
Tetz							
	-98.2	-53.7	-19.6			2	
BenIm							
Phth	-68.7	-42.3	-39.5	-34.4	-30.9	3	
O, ⊖`O I (⊖`) CF ₃	-89.4	-60.6	-56.9	-54.7		4	
$ \begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{3}^{\ominus} \end{bmatrix} $	-56.9	-50.7	-46.5			5	
tri(imidazolyl)hydroborate							
$\begin{bmatrix} \swarrow \\ N \approx \end{pmatrix}_{3}^{\Theta}$	-63.1	-56.2	-52.8			5	
tri(pyrazolyl)hydroborate							
$\begin{bmatrix} N \\ N \\ N \\ 3 \end{bmatrix} \xrightarrow{\bigcirc} BH$	-49.1	-48.2	-42.1	-31.2		5	
tri(1,2,4-triazolyl)hydroborate							
$\begin{bmatrix} N = N \\ -N \\ N = \end{pmatrix} = \begin{bmatrix} \Theta \\ BH \\ BH \\ 3 \\ tri(tetrazolyl)hyd \\ roborate \end{bmatrix}$	-37.6	-36.7	-34.7	-24.4		5	

Table S2. Calculated sequential SO ₂ binding energies (kJ mol ⁻¹) of selected anions. "-n" means the									
neutral molecule of the anion counterpart shown in Figure 1.									
E _b	TAA-	TAMA-n	TAEA-n	TAAL-n	TIA-n	TIA-1-n	TIAL-n	TIAL-1-n	TAB-n
	n								
1	-26.5	-47.2	-46.8	-74.7	-27.6	-37.5	-27.3	-94.5	-26.2
2	-24.3	-34.2	-48.3	-57.7	-25.9	-33.2	-28.2	-72.2	-21.5
3	-21.3	-25.7	-46.3	-46.0	-25.0	-32.7	-32.9	-49.4	-16.7
E _b	TIB-n	TIB-1-n	TPA	TPB	TIA-2	TIAL-2	TIB-2	THMA	THB
1	-27.8	-36.1	-27.3	-32.1	-25.8	-25.8	-27.5	-148.4	-104.0
2	-27.2	-36.9	-28.5	-26.5	-24.7	-24.8	-26.7	-60.7	-67.3
3	-27.2	-35.1	-25.5	-14.8	-23.5	-24.1	-26.3	-43.8	-28.4

Table S3. Detailed simulated capacities of the selected anions.							
Anions	Absorption capacity (1 bar of SO ₂ , 20°C)	bar of SO ₂ , 20°C) Residual capacity $(1 \text{ bar of SO}_2, 120^{\circ}\text{C})$					
N(☉) N−N	3.44	1.91	1.53				
	3.59	1.04	2.55				
CF ₃	4.00	3.38	0.62				
	6.12	4.95	1.17				
NH [⊖] H ₂ N ^{∠AI} ∖NH ₂	5.96	4.10	1.86				

Figure S1. Other tri-branched species (including anion and neutral ones) studied in this work.

Figure S2. Configurations of (a) TAA, (b) TAEA, (c) TIAL and (d) TIAL-1 with their sequential SO_2 absorptions. The important bond lengths (Å) are given. Red is oxygen, blue is nitrogen, yellow is sulfur, gray is carbon and white is hydrogen.

Figure S3. Line chart of calculated sequential SO₂ binding energies (kJ mol⁻¹) of the studied anions. Consecutive numbers below means the numbers of absorbed SO₂.

Figure S4.Stacked column plot of calculated sequential SO_2 binding energies (kJ mol⁻¹) of the studied anions. The minimum and the maximum of each binding are labeled by numbers in black during the second to the fifth SO_2 attachment.

Figure S5. Configurations of the sequential SO₂ absorptions using **TIA**. The distances between N-S (Å) and the angles of \angle OSO are given.

Figure S6. Various stable configurations of (a) TAEA-2SO₂, (b)TAEA-3SO₂ and (c)TAEA-5SO₂ complexes. The binding energy or the relative binding energy with respect to the most stable one (in kJ mol⁻¹) are given below each configuration.

Figure S7. The first binding energy of studied anions and SO_2 versus the NBO orbital energy of the lone pair of the reacting N atom.

Figure S8. The first binding energy of selected anions and SO_2 versus the NBO orbital energy of the lone pair of the reacting N or S atom.

Figure S9. Multiple-site interactions in the optimized structures based on **Tetz** and NO dimers at (a-d) B3LYP/6-311++G(d,p) level and (e-f) MP2/6-31+G(d) level. (a) **Tetz**-NONO, ΔE = -42.9 kJmol⁻¹; (b) **Tetz**-2NONO, ΔE = -34.2 kJ mol⁻¹; (c) **Tetz**-3NONO, ΔE = -26.5 kJ mol⁻¹; (d) **Tetz**-4NONO, ΔE = -23.4 kJ mol⁻¹; (e) **Tetz**-NONO, ΔE = -47.4 kJ mol⁻¹; (f) **Tetz**-2NONO, ΔE = -45.5 kJ mol⁻¹.

Figure S10. Multiple-site interactions in the optimized structures based on TAEA and NO dimer at (a-d) B3LYP/6-311++G(d,p) level and (e-f) MP2/6-31+G(d) level. (a) TAEA-NONO, ΔE = -219.0 kJ mol⁻¹; (b) TAEA-2NONO, ΔE = -43.5 kJ mol⁻¹; (c) TAEA-3NONO, ΔE = -31.8 kJ mol⁻¹; (d) TAEA-4NONO, ΔE = -34.9 kJ mol⁻¹; (e) TAEA-NONO, ΔE = -226.2 kJ mol⁻¹; (f) TAEA-2NONO, ΔE = -69.9 kJ mol⁻¹.

Reference

- 1. C. Wang, G. Cui, X. Luo, Y. Xu, H. Li and S. Dai, J. Am. Chem. Soc., 2011, 133, 11916-11919.
- 2. G. Cui, W. Lin, F. Ding, X. Luo, X. He, H. Li and C. Wang, *Green Chem.*, 2014, 16, 1211-1216.
- 3. G. Cui, F. Zhang, X. Zhou, Y. Huang, X. Xuan and J. Wang, *ACS Sustain. Chem. Eng.*, 2015, **3**, 2264-2270.
- 4. G. Cui, N. Zhao, Y. Li, H. Wang, Y. Zhao, Z. Li and J. Wang, *ACS Sustain. Chem. Eng.*, 2017, **5**, 7985-7992.
- 5. H. Tang and D. Lu, *ChemPhysChem*, 2015, **16**, 2854-2860.