
Physical Chemistry Chemical Physics

ELECTRONIC SUPPORTING INFORMATION

Table S1: Lattice parameters obtained from the refined powder	XRD patterns collected on the as synthesized materials and after the
stability tests in 2 M NaOH solution.	

Sample		Dhasa	Cell parameters				Co co a do ma mb	(···+ 0/)		
		Phase	a (Å)	b (Å)	c (Å)	Vol (ų)	Secondary phases (wt.%)			
La ₂ NiO ₄	as synthesised	Fmmm	5.458	5.461	12.693	378.3	La ₂ O ₃ (4.9)	NiO (4.1)		
	2 M NaOH	Fmmm	5.456	5.462	12.697	378.4	$La_2O_3(5.8)$	NiO (5.5)		
La _{1.8} Ce _{0.2} NiO ₄	as synthesised	Fmmm	5.448	5.447	12.681	376.3	CeO ₂ (11.4)		CeO ₂ (11.4)	
La _{1.8} CC _{0.2} NIC ₄	2 M NaOH	Fmmm	5.449	5.448	12.684	376.5	CeO ₂ (11.3)			
La _{1.9} Pr _{0.1} NiO₄	as synthesised	Fmmm	5.458	5.458	12.671	377.5	none			
	2 M NaOH	Fmmm	5.457	5.457	12.670	377.3	none			
La _{1.8} Pr _{0.2} NiO₄	as synthesised	Fmmm	5.454	5.454	12.666	376.8	none			
La _{1.8} F1 _{0.2} 14104	2 M NaOH	Fmmm	5.454	5.452	12.664	376.6	none			
La₁ ₅Sr₀ ₁NiO₄	as synthesised	Fmmm	5.444	5.446	12.697	376.4	(La,Sr)NiO ₃ (traces)			
La _{1.9} 51 _{0.1} 11104	2 M NaOH	Fmmm	5.445	5.445	12.696	376.4	(La,Sr)NiO ₃ (traces)			
La ₂ CuO ₄	as synthesised	Bmeb	5.353	13.153	5.393	379.7	none			
	2 M NaOH	Bmeb	5.353	13.153	5.394	379.8	none			
La _{1.9} Pr _{0.1} CuO₄	as synthesised	Bmeb	5.356	13.144	5.404	380.4	none			
La _{1.9} P1 _{0.1} CuO ₄	2 M NaOH	Bmeb	5.404	13.143	5.355	380.3	none			
$La_{1.9}Sr_{0.1}CuO_4$	as synthesised	Bmeb	5.344	13.193	5.351	377.3	none			
	2 M NaOH	Bmeb	5.345	13.199	5.355	377.8	none			

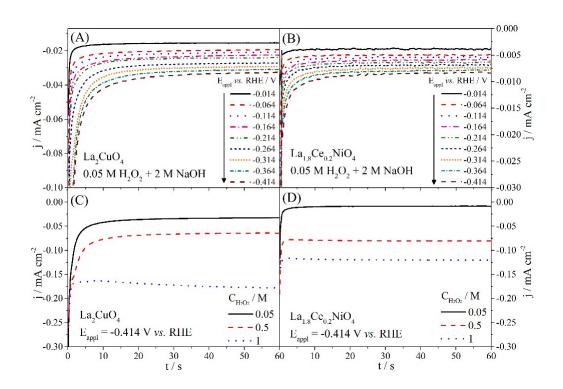


Figure S1: LSV of a Pt electrode at 10 mV s⁻¹ in 0.05 M H₂O₂ + 2 M NaOH solution (pre-saturated with H₂) used for calibration of SCE to RHE reference scale. Similar curves were recorded for the solutions containing 0.5 and 1 M H₂O₂. From these measurements, the formula $E_{RHE} = E_{SCE} + 0.186$ V, 0.215 V or 0.219 V, for 0.05 M, 0.5 M or 1 M H₂O₂ solutions, respectively, was determined.

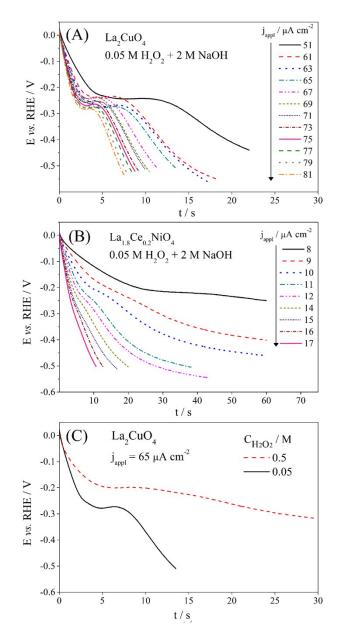

ELECTRONIC SUPPORTING INFORMATION

Figure S2: Effect of potential scan rate on the LSVs of La_2CuO_4 in 0.05 M H_2O_2 + 2 M NaOH (A) and comparison of LSVs of La_2CuO_4 and $La_{1.8}Ce_{0.2}NiO_4$ electrodes at 25 mV s⁻¹ (B).

Figure S3: CA curves of $L_{2}CuO_{4}$ (A) and $L_{1.8}Ce_{0.2}NiO_{4}$ (B) electrodes in 0.05 M $H_{2}O_{2}$ + 2 M NaOH solutions for different applied potentials, and CA curves of $L_{2}CuO_{4}$ (C) and $L_{1.8}Ce_{0.2}NiO_{4}$ (D) in solutions with different $H_{2}O_{2}$ concentrations at applied potential of -0.414 V.

Figure S4: CP curves of La₂CuO₄ (A) and La_{1.8}Ce_{0.2}NiO₄ (B) electrodes in 0.05 M H₂O₂ + 2 M NaOH, and of La₂CuO₄ in two different H₂O₂ concentrations and current density of 65 μ A cm⁻² (C).