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Figure S1: The in-situ-heated slab-geometry sample holders used in this work.
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Figure S2: The result of offline testing using a 15 mm-deep slab can containing MgO powder 

with a RhFe sensor embedded in the centre. The grey line shows the temperature measured by a 

RhFe sensor in the Al-alloy frame of the can (the typical measurement made during a ‘real’ 

experiment) and the red-line is the measured temperature in the middle of the MgO powder. 

Yellow bands indicate a 10 minute period after the frame sensor is within 2 K of the set-point. In 

the absence of an embedded sensor in ‘live’ online experiment, pursuit of this strategy – slow-

ramp and equilibration wait – provides a degree of certainty that the sample temperature is both 

an accurate and precise reflection of the sample holder’s temperature.
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Figure S3: Plot of the logged frame temperatures during our C6H6 measurements. The grey line 

contains the complete thermal record and the red segments indicate where in this record the data 

collection occurred. Note that the measurements are much longer than with C6D6, leading to the 

equilibration times appearing very short by comparison with the subsequent 100 minute time-of-

flight data collection (in reality, the same 10 minute wait was used).

Figure S4: Plot of the logged frame temperatures during our C6D6 measurements, where lines 

and colours have the same meaning as in Figure S3.
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Figure S5

High-resolution neutron powder diffraction data for C6H6 measured at 10 K collected in 

backscattering using a 30–130 ms time-of-flight window. Filled red circles are the data and 

the solid-green line is an ‘F(Calc) weighted’ fit, the difference curve being reported in purple 

underneath. Vertical tick marks show the positions of Bragg reflections from C6H6 (top) and 

silicon (bottom). The two excluded regions at shorter d-spacings are due to removal of 

prompt-pulse artefacts (see main text). Note that the overall count rate is around an order of 

magnitude lower than from the deuterated sample and that the signal sits on top of a 

substantial incoherent background due to 1H.
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Figure S6a

High-resolution neutron powder diffraction data for C6D6 measured at 10 K using a 30–130 

ms time-of-flight window. Filled red circles are the data and the solid-green line is an 

‘F(Calc) weighted’ fit, the difference curve being reported in purple underneath. Vertical tick 

marks show the positions of Bragg reflections from C6D6 (top) and silicon (bottom).
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Figure S6b

High-resolution neutron powder diffraction data for C6D6 measured at 10 K using a 100–200 

ms time-of-flight window. Filled red circles are the data and the solid-green line is an 

‘F(Calc) weighted’ fit, the difference curve being reported in purple underneath. Vertical tick 

marks show the positions of Bragg reflections from C6D6 (top) and silicon (bottom).

All of the raw experimental data can be accessed at doi: 10.5286/ISIS.E.87846762 (2017).

https://doi.org/10.5286/ISIS.E.87846762
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Figure S7

Compilation of density measurements for ordinary benzene in its liquid and crystalline solid 

form compared with densities calculated from unit-cell volumes obtained by neutron powder 
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diffraction. The literature measurements agree very well with one another, with the exception 

of the two oldest works: Kopp (1855) reports liquid densities that are systematically 0.1 % 

smaller than all later values; Ferche (1891) reports liquid and solid densities that are 

systematically 0.75 % smaller than all later values. For the purpose of this illustration, both 

Kopp’s and Ferche’s densities have been adjusted upward by 0.1 and 0.75 %, respectively. A 

2nd-order polynomial was fitted through the liquid densities in the range 270 – 360 K in order 

to find an accurate value for the density of the liquid at the melting point. The density of the 

solid at the melting point was found using the double-exponential model fitted to the lattice 

parameters (see main text).

Figure S8

Compilation of density measurements for perdeuterated benzene in its liquid and crystalline 

solid form. As for C6H6, a second-order polynomial was fitted to the literature-derived liquid 

density data and the density of the solid at the melting point was extrapolated using our 

double-exponential model fit. The dashed grey line show likely variation of density up to the 

melting point based in the measurements of Dunitz & Ibberson (2008).
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Figure S9

Axial ratios, b/a in black and c/a in red, for both isotopologues. Solid lines report the trends 

for C6D6 from fitting of Eqs. 1 and 2 to the unit-cell parameters and dashed lines report the 

same results for C6H6.
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Supplementary Tables

Table S1: Unit-cell parameters of C6H6 as a function of temperature. Uncertainties in T are 

the standard deviation of the measured temperature during the period in which data was being 

collected. Uncertainties in the cell parameters and the volume are those reported by GSAS.

T (K) a (Å) b (Å) c (Å) V (Å3)

10.00(2) 7.36623(4) 9.38602(5) 6.71088(4) 463.987(3)
24.99(4) 7.36749(6) 9.38756(7) 6.71250(5) 464.255(5)
50.0(1) 7.37376(7) 9.39672(7) 6.72284(5) 465.820(5)
75.00(7) 7.38301(6) 9.41150(8) 6.74017(6) 468.342(5)
99.99(2) 7.39423(7) 9.42905(9) 6.76245(6) 471.482(5)
125.00(1) 7.40580(6) 9.44895(8) 6.78844(5) 475.035(5)
150.01(1) 7.41818(7) 9.4715(1) 6.81811(6) 479.051(6)
175.00(1) 7.43065(7) 9.4975(1) 6.85249(7) 483.596(5)
200.01(1) 7.44306(8) 9.5278(1) 6.89193(7) 488.747(6)
225.00(1) 7.45531(9) 9.5654(1) 6.93753(9) 494.735(8)
250.00(1) 7.4670(1) 9.6144(2) 6.9893(1) 501.77(1)
275.00(1) 7.4771(2) 9.6801(2) 7.0450(2) 509.91(2)
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Table S2: Unit-cell parameters of C6D6 as a function of temperature. Uncertainties in T are 

the standard deviation of the measured temperature during the period in which data was being 

collected. Uncertainties in the cell parameters and the volume are those reported by GSAS. 

Data were collected on warming from 10 to 276K; the final point at 140 K was measured 

after cooling back down from 276 K.

T (K) a (Å) b (Å) c (Å) V (Å3)

10.01(2) 7.35438(2) 9.37040(2) 6.69943(2) 461.681(1)
20.01(2) 7.35482(8) 9.37111(8) 6.70030(7) 461.804(4)
30.00(3) 7.35633(8) 9.37340(8) 6.70268(7) 462.176(4)
39.99(2) 7.35907(8) 9.37696(9) 6.70652(7) 462.788(4)
50.01(3) 7.36168(8) 9.38170(8) 6.71202(7) 463.566(4)
60.00(2) 7.36549(8) 9.38696(8) 6.71840(6) 464.507(4)
70.00(3) 7.36945(7) 9.39313(8) 6.72586(6) 465.579(4)
80.00(3) 7.37386(7) 9.39953(8) 6.73391(6) 466.733(4)
90.00(3) 7.37833(7) 9.40659(8) 6.74264(6) 467.973(4)
100.00(1) 7.38288(7) 9.41403(8) 6.75212(6) 469.290(4)
110.00(1) 7.38768(6) 9.42207(8) 6.76194(5) 470.680(4)
120.00(1) 7.39262(7) 9.42990(9) 6.77227(6) 472.106(5)
130.01(2) 7.39758(6) 9.43862(8) 6.78323(5) 473.625(4)
140.00(1) 7.40277(6) 9.44751(8) 6.79465(6) 475.203(4)
150.01(1) 7.40808(7) 9.45680(8) 6.80687(6) 476.867(4)
160.00(1) 7.41328(6) 9.46656(8) 6.81977(6) 478.599(4)
170.00(1) 7.41860(6) 9.47682(9) 6.83326(6) 480.411(4)
180.03(2) 7.42388(7) 9.48766(9) 6.84782(6) 482.328(5)
190.01(2) 7.42905(7) 9.49958(9) 6.86318(6) 484.354(5)
200.00(1) 7.43406(7) 9.51224(9) 6.87955(6) 486.484(5)
210.00(1) 7.43920(6) 9.52596(9) 6.89705(6) 488.763(5)
220.01(1) 7.44421(7) 9.5409(1) 6.91545(7) 491.168(5)
230.01(1) 7.44920(7) 9.5577(1) 6.93487(6) 493.744(5)
240.01(1) 7.45403(6) 9.5764(1) 6.95544(6) 496.500(5)
250.01(1) 7.45878(7) 9.5971(1) 6.97692(7) 499.426(6)
260.00(1) 7.46339(7) 9.6206(1) 6.99924(7) 502.561(6)
262.00(1) 7.46439(8) 9.6259(1) 7.00381(7) 503.235(6)
264.00(1) 7.46553(9) 9.6307(1) 7.00831(8) 503.883(7)
265.99(2) 7.4665(1) 9.6364(1) 7.01282(9) 504.574(7)
268.00(1) 7.4674(1) 9.6419(2) 7.01740(9) 505.254(8)
270.01(1) 7.4684(1) 9.6479(2) 7.0221(1) 505.973(8)
272.01(1) 7.4697(1) 9.6534(2) 7.0263(1) 506.65(1)
274.01(1) 7.4704(1) 9.6593(2) 7.0312(1) 507.37(1)
276.01(2) 7.4711(2) 9.6661(2) 7.0358(1) 508.10(1)

139.99(3) 7.40185(6) 9.44693(7) 6.79627(5) 475.227(4)
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Table S3: Parameters obtained by least-squares fitting of equations 1 and 2 to the data given 

in Tables 1 and 2. Not that all parameters were fitted independently for the b-axis and c-axis; 

for the a-axis, the terms q and s were fixed equal in the protiated and deuterated species and 

determined as part of a global fit. RSS = residual sum of squares.

Parameter C6D6 C6H6

a-axis

a0 (Å) 7.3542(1) 7.3662(1)
p 9.3(1) x 10−5 9.0(1) x 10−5

q −35.9(8) −35.9(8)
r −2.2(4) x 10−5 −2.5(5) x 10−5

s −652(57) −652(57)
RSS 7.21 x 10−7 4.04 x 10−7

b-axis

b0 (Å) 9.3707(2) 9.3861(3)
p 1.29(2) x 10−4 1.28(2) x 10−4

q −45(1) −45(1)
r 2.2(2) x 10−3 1.6(2) x 10−3

s −1288(23) −1206(35)
RSS 3.70 x 10−6 9.36 x 10−7

c-axis

c0 (Å) 6.6993(2) 6.7109(1)
p 2.13(3) x 10−4 2.26(2) x 10−4

q −43.7(9) −48.3(5)
r 1.67(9) x 10−3 1.70(5) x 10−3

s −627(15) −644(12)
RSS 1.43 x 10−6 4.65 x 10−8
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