Electronic Supplementary Information

Unveiling the Multifunctional Roles of Hitherto Known Capping Ligand,

Oleic Acid, as Blue Emitter and Sensitizer in Tuning the Emission Colour to

White in Red-emitting Phosphors

S. Sekar^a, J. George Muller^a, J. Karthikeyan^{a,b}, P. Murugan^{a,b},

N. Lakshminarasimhan^{a,b,*}

^aFunctional Materials Division
CSIR-Central Electrochemical Research Institute
Karaikudi 630 003, Tamil Nadu, India.
^bAcademy of Scientific and Innovative Research
CSIR Campus, Chennai 600 113, Tamil Nadu, India.

Fig. S1. Powder XRD patterns of Al_2O_3 obtained by combustion synthesis and OA-modified Al_2O_3 by hydrothermal method. All the reflections indexed based on the standard pattern ICDD (#00-046-1212) confirm the formation of Al_2O_3 with corundum structure with rhombhohedral symmetry.

Fig. S2. FT-IR spectra of OA, Al₂O₃ and Al₂O₃/OA.

Fig. S3. Room temperature PL excitation ($\lambda_{em.} = 614$ nm) and emission ($\lambda_{exc.} = 394$ nm) spectra of ZnAl_{2-x}Eu_xO₄ samples revealing the different excitation and emission transitions of Eu³⁺.

Fig. S4. FE-SEM images of (a), (b) ZnAl₂O₄ and (c), (d) ZnAl₂O₄/OA.

Fig. S5. TGA traces of ZnAl₂O₄ and ZnAl_{1.995}Eu_{0.005}O₄/OA.

Fig. S6. The DOS of bulk ZnAl₂O₄.

Fig. S7. The optimized structure of (311) surface of $ZnAl_2O_4$. Here, orange, pink, and blue, coloured balls represent Zn, A, and O atoms, respectively. The DOS of (311) surface of $ZnAl_2O_4$ is also shown.

Fig. S8. XPS core level spectra of Zn-2p (a and b), Al-2p (c and d) and O-1s (e and f) in pristine ZA:Eu³⁺ and ZA:0.01Eu³⁺/OA samples.

Fig. S9. Room temperature PL emission spectra of (a) pristine and OA-modified Y_2O_3 :Eu³⁺ and (b) OA and OA-modified Al₂O₃. The spectrum of OA was recorded in solution state.