Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Physical Chemistry Chemical Physics

Supporting Information

Thermochemistry of the Smallest QOOH Radical from the Roaming Fragmentation of Energy Selected Methyl Hydroperoxide Ions

Kyle Covert,^a Krisztina Voronova,^a Krisztián Torma,^a Andras Bodi,^b Judit Zádor,^{c,*} Bálint Sztáray^{a,*}

^aDepartment of Chemistry, University of the Pacific, Stockton, California, USA

^bLaboratory of Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Villigen, Switzerland

^cCombustion Research Facility, Sandia National Laboratories, Livermore, California, USA

*Corresponding authors. E-mail: jzador@sandia.gov and bsztaray@pacific.edu.

Contents

- SI-1. Cartesian coordinates (Å) and frequencies (cm⁻¹) of the structures shown in Fig. 4 of the main text
- SI-2. Potential eenrgy along the direct dissociation channels of CH₃OOH⁺ and details of the related VRC-TST calculations
 References in SI

					1328.0551	1429.9802	1461.9889
SI	-1. Cartes	sian coordi	nates (Å) and harmonic		1465.9113	1492.1280	3052.4757
vil	national	frequencies	(cm^{-1}) of the structures		3155.8766	3216.2940	3525.1232
			in text				
sn	own in Fig	g. 4 of the m	lain text	[CH	I₂OH₂O] ⁺		
All	structures are	e determined at	t the M06-2X/MG3S level of theory,	С	0.000737	0.003475	-0.000618
un	ess otherwise	e stated.		0	0.002829	-0.023512	1.202945
сц	00H+			0	2.083125	-0.015558	1.656387
СП	3000			Н	2.155370	0.747814	2.250859
C	-0.002984	-0.008435	-0.053609	Н	0.937889	0.024461	-0.571840
0	0.102482	-0.084886	1.399874	Н	-0.979643	0.006213	-0.503446
0	1.324637	0.091764	1.786308	Н	2.168886	-0.803448	2.216055
Н	1.295204	0.007491	2.769286				
Н	0.526084	0.886500	-0.375866		212.1816	241.6769	320.5458
Н	0.456133	-0.919204	-0.442254		373.9409	516.6394	611.5874
Н	-1.072899	0.026770	-0.227988		1094.1646	1182.9454	1397.3732
					1604.2922	1722.0921	2972.7328
	29.1951	483.6923	606.2834		3102.3353	3731.8144	3840.9237
	828.5928	1113.9179	1148.7260				
	1330.6078	1422.6025	1452.1987		1.0H 0H1+		
	1462.8266	1509.9920	3062.8506		0 007896	0.000001	0.01/667
	3168.7436	3226.8508	3568.4040	0	0.007850	-0.000001	1 244733
				ц Ц	0.010055	0.00000	0 554206
СН	₃OOH ⁺ confor	mer			0.959252	-0.000009	-0.554290
С	-0.021220	0.016013	-0.031707	п Ц	-0.901098	0.000018	1 707/61
0	0.039240	0.097273	1.425486		0.956540	-0.000022	1.707401
0	1.206669	-0.008319	1.959336	U Ц	2.322041		2.230330
н	1.895483	-0.132156	1.260508	п	2.482000	-0.000030	5.204585
н	0.572434	0.841997	-0.427463		120 /1/2	150 9240	216 0100
н	0.359029	-0.966259	-0.317797		139.4143	159.8340	340.8488
н	-1.078306	0.127516	-0.250273		1221 2247	1264 0021	1209.2467
					1231.3247	1204.9931	1502.0054
	67 1032	173 2391	517 1296		12191930	1/00./004	2413.0018
	850 35/0	1108 6629	1165 1656		3099.2929	3230.4984	3691.2243
	050.5549	1100.0020	1103.1030				

Fragmentation of Energy Selected Methyl Hydroperoxide Ions

0.210843

1.509691 1.872237

2.546185

0.536437

0.012487

-0.469574

578.7971

987.7497

1213.6007

1682.1145

3589.3142

0.022172

1.395014

1.854253

2.769833

0.581160

-0.389345

-0.245762

402.8962

912.1031

1169.7199

2208.5088

3703.9105

-0.000798

1.183765

0.824904

1.042909

-0.501550

-0.558865

1.042909

275.1581

495.8514

1231.8549 2707.0121

3896.4606

0.000000

1.067009

-1.268284

-1.235027

-0.264169

-2.187152

1.514584

142.9442

786.0880

1404.3288

1792.5007

3771.1157

[HC	COH ₃ O]	0.000101	0.001220	$CH_3OOH \leftrightarrow [CH_2OH_2O] (1f)$
C	-0.000177	0.000131	-0.001229	C = -0.104079 = -0.120885
0	0.003238	-0.009860	1.158/89	
U L	2.530070	-0.002435	-1.020855	
	1.536470	-0.004365	-0.043573	
н	-0.889578	0.013498	-0.670528	H 1.254116 0.129802
н	3.020865	-0.827865	-0.850081	H U.276292 -1.136594
н	3.055980	0.771917	-0.747950	H -0.810414 0.340055
	55.7697	128.3581	293.6109	-1721.7931 458.9070
	390.2926	539.6511	661.8329	697.2571 935.8030
	1005.8922	1088.4077	1611.6462	1058.4422 1138.2958
	1625.5956	2005.9279	2110.2849	1347.9788 1466.3955
	2857.5848	3703.5817	3787.2640	2980.0700 3236.5863
ГНО	COH₃O1 ⁺ cor	nformer		CH₃OOH ⁺ ↔ [CH₂OHOH] ⁺ (1g)
c	-0.003154	0.034484	-0.000849	C -0.075543 -0.116585
0	0.002289	-0.034955	1.182400	0 0.127248 0.239005
0	1.922205	-0.002717	2.710006	0 1.323585 -0.335629
н	1 088690	-0.016013	2 034918	H 1 365428 0 003142
н	2.050314	-0.826223	3.207394	H 0.357584 1.069812
н	1 948812	0 766421	3 301349	H 0.672369 -0.780944
н	-0.901826	0.015216	-0.645015	H -1.121686 -0.041848
	49.0567	141.3610	331.7394	-1977.3350 302.4360
	425.6481	526.2876	543.0460	442.3089 878.9118
	1108.9298	1175.4495	1615.0201	1025.8601 1108.0849
	1697.8174	1884.8437	2154.9824	1402.6417 1500.2184
	2951.5658	3742.8973	3821.6440	3145.5170 3319.8275
[c-(C(H₂)OO(H) ⁺]			[CH₂OH₂O] ⁺ ↔ [HCOH₃O] ⁺
c	0.166539	-0.040084	0.042389	C -0.002618 0.000000
0	-0.018574	-0.194287	1.401820	O -0.004391 0.000000
0	1.323230	0.122315	0.923230	O 2.515765 0.000000
н	1.481165	1.060584	1.184399	H 3.060235 0.766402
н	0.255783	-0.947812	-0.543807	H 1.002435 0.000000
н	-0.195536	0.881832	-0.400960	H -0.962734 0.000000
				H 3.060235 -0.766402
	780.3845	902.3883	944.0649	
	1044.8779	1212.2655	1262.5185	-199.8563 254.5346
	1288.0224	1308.7057	1534.9622	282.0735 385.8679
	3143.3694	3280.0374	3572.7141	853.5180 1129.7321
				1647.2786 1720.0318
СН	₃OOH ⁺ ↔ [CH	$\left[{}_{2}OH_{2}O \right]^{+}$ roan	ning (1e)	2930.1572 3800.0308
(at	the MP2/6-3	11++G** level)		
С	0.002083	0.004819	0.000141	$[CH_2OHOH]^+ \leftrightarrow [CH_2OH_2O]^+$
0	-0.011037	0.028127	1.270052	H 0.000000 0.000000
0	2.675412	-0.105988	-0.662771	O 0.000000 0.000000
н	3.346751	-0.063133	-1.368749	O 0.369719 0.000000
н	1.173824	-0.040037	-0.309579	C 1.577709 0.000000
н	-0.445275	-0.932505	-0.406327	H 2.109437 0.000000
н	-0.392926	0.949673	-0.440342	H 2.130592 0.000000
	5.552520	0.070070	0.170072	H -0.863387 0.000000
	-433.8385	50.4221	134.1464	1703 /700 100 1775
	301.9980	434.0817	860.6389	
	892.3774	1022.0716	1115.1075	425.1447 580.1565
	1202 2407	1417 1505	1000 1450	113/.00/3 1189.4//9
	1283.2407	1417.1595	1629.1459	1410 0040 1470 7054
	1283.2407 2845.9268	2934.7198	3754.1001	1419.8240 1478.7951

00	pporting init	511110111011	
~			
СН		+ H ₂	0 120001
C	0.165423	0.000004	0.138861
0	-0.234284	-0.000520	1.268948
н	1.402932	-0.000575	-0.042195
н	-0.327953	0.000933	-0.844008
н	1.13/384	-0.001088	0.951851
	-2240.4670	299.1773	1063.4181
	1201.0050	1515.5645	1889.4368
	2209.0450	2290.4366	3089,1214
	220010100		
СН	$_2OH^+\leftrightarrow COH^+$	+ H ₂	
С	-0.000019	-0.000001	0.000021
0	0.000046	0.000004	1.232220
Н	1.377411	0.000003	-0.268122
Н	0.657566	-0.000003	-0.970297
Н	0.812551	0.000010	1.783455
	4705 5650		004 5 447
	-1/95.5659	846.5086	921.5417
	1006.8547	1224.5553	15/3.562/
	1910.4916	2651.0075	3590.1622
СН	.00H ⁺ ↔ CH.	00H+ ⁺ H	
(31	the M06-2X/	6_211++G** lov	al)
(at			
0	0.000000	0.000000	1 /06852
0	1 251522	0.000000	1.400852
Ц Ц	1.231333	0.000000	2 696669
н	0.402035	0.000000	-0.385925
Ц	0.452555	1 5575/1	0.585525
н	-1 052839	0 000000	-0.281713
	1.052005	0.000000	0.201715
	-578.5919	219.4090	305.4380
	454.1357	512.3021	820.2564
	920.3706	1190.8196	1243.0296
	1407.4290	1489.0438	1629.1707
	3145.7283	3305.3691	3724.9259
<u></u>		» ⁺ · U O	
СП		0.057010	0 000006
0	-0.022840	0.037019	1 206045
0	1 406147	-0.247103	1.200043
ц	1.400147	-0.311723	2 2/38//
н	1.004282	0.053/11	0 371833
н	-1 004546	0 122104	-0 476648
	1.001010	0.122101	0.170010
	-1922.5596	458.9637	537.8613
	871.4707	903.2206	1115.2099
	1165.5177	1353.9123	1462.9819
	1934.8784	3099.2141	3580.8743
СН	₂ OOH ↔ <i>c</i> -C(H₂)OO(H) [™]	
C	0.014906	-0.144520	0.019576
0	0.007390	-0.164128	1.322310
0	1.462027	-0.148722	1.190216
н	1.663819	0.769118	1.470500
H	0.466591	-0.973468	-0.522046
Н	-0.526692	0.661/52	-0.482098
	-770.5986	552,5505	743,5465
	948,2548	1208.6793	1246.2819

Fragmentation of Energy Selected Methyl Hydroperoxide Ions

1340.4478	1434.7269	1561.9108
3085.0306	3237.5425	3660.6481

$CH_2OOH^+ \leftrightarrow [CHO^+ + H_2O]... \rightarrow CO + H_3O^+$ (CCSD(T)-F12 max energy structure along the triplet O-O bond breaking path) С -0.422891 0.000001 -1.222652 0 0.566567 -0.000001 -0.539712 0 -0.182901 -0.000001 1.524812 н 0.662122 0.000015 2.032151 -0.781991 н -1.429944 0.000002 Н -0.282921 0.000001 -2.317412 n.a. CH₂OH⁺ С 0.000179 0.000152 -0.000025 0 -0.000072 -0.000410 1.239165 н 0.929350 -0.000146 -0.569933 Н 0.000954 -0.978346 -0.476040 Н 0.874797 -0.001134 1.680872 1025.5485 1113.4142 1266.7308 1496.1364 1381.1429 1714.3991 3113.2403 3253.2288 3646.7628 ³CH₃O⁺ С -0.012538 -0.021716 -0.008866 Н -0.024651 -0.014232 1.116205 Н 1.047624 -0.024651 -0.385486 0 -0.622049 -1.077420 -0.439855 -0.545160 0.894944 н -0.385486 842.0529 842.0600 1141.1774 1141.1781 1238.0495 1248.2855 2725.4872 2751.8354 2751.8367 CH₂OOH⁺ С 0.001315 0.000008 0.000870 0 0.003973 -0.000004 1.236591 0 1.289485 0.000008 1.781805 Н -0.000005 1.094101 2.738657 н 0.943493 0.000027 -0.546940Н -0.989994 0.000000 -0.446856 306.3033 519.4868 717.7419 939.9378 1199.7799 1248.4000 1428.7326 1499.1051 1721.8556 3112.2957 3260.5715 3713.2040 ¹CH₃OO⁺ С 0.051653 -0.026935-0.100503 0.305510 0 -0.331108 1.325267 0 1.050709 0.369783 1.911146 н 0.639237 0.846784 -0.363666 -0.959374 -0.599508 Н 0.331773 Н -1.034494 0.100850 -0.130057

192.1249

1041.5559

1402.9831

549.2839

1195.4668

1446.4367

729.3612

1381.2969

1707.0523

	3035.0938	3124.8044	3227.5765
³C⊦	l₃OO ⁺		
С	0.004669	-0.001274	-0.168740
0	0.168704	0.002627	1.430620
0	1.253305	0.004047	1.932084
Н	0.496982	0.921460	-0.459357
Н	0.497333	-0.925215	-0.454889
Н	-1.076606	-0.001645	-0.237039
	96.0182	328.2417	518.0732
	1062.9573	1096.7323	1396.5173
	1435.1990	1450.8976	1645.9003
	3098.5379	3249.5466	3265.2685

SI–2. Potential energy along the direct dissociation channels of CH_3OOH^+ and details of the related VRC-TST calculations

 $CH_3OOH^+ \rightarrow CH_2OOH^+ + H$ (1a)

Figure SI–2.1. Energy profiles along the C–H bond in CH_3OOH^+ at various levels of theory. All curves are fully relaxed and ZPE-exclusive, unless noted in the legend. The asymptote is the zero of energy.

This reaction is near barrierless at the M06-2X/MG3S and M06-2X/6-311++G(d,p) levels (there is a slight barrier at ~3.3 Å), while it is barrierless at the B3LYP/6-311++G(d,p) one. With MP2/6-311++G(d,p) we found a barrier at ~2.0 Å, where the barrier is correlated with the planar-to-tetrahedral geometry change along the C–H coordinate. Using CASPT2(3e,3o)/aug-cc-pVDZ we also found this saddle point at ~2.1 Å (the active space consists of the σ and σ^* orbitals of the breaking bond and the HOMO). Such variations in the location of this very low barrier are not unexpected and the trends are similar to the findings of Harding *et al.*¹ for neutral species. Using the CASPT2(3e,3o)/aug-cc-pVTZ geometries and ZPE correction we calculated F12 energies for this small barrier and obtained -0.04 eV, and remarkably, the CASPT2(3e,3o)/aug-ccpVTZ value is also -0.04 eV. These values in case of taking the MP2

Fragmentation of Energy Selected Methyl Hydroperoxide Ions

geometries are -0.03 and 0.13 eV, respectively. We expect no variational effects to play a role in this region based on the ZPE-corrected potential energy curve for MP2, because the ZPE-corrected maximum coincides with the electronic one along the path, and it is also above the asymptote.

The long-range part of the potential for channel 1a is largely invariant to basis set, active space, and geometry relaxation at the CASPT2 level. Therefore, we sampled the potential at the CASPT2(1e,1o)/aug-cc-pVDZ level between ~3.5 and 15 Å C–H separation of the rigid fragments using overall ~4000 sample points that converged the results to within 5%. At longer distances we only placed the pivot points on the center of mass of the fragments, while at closer separations we calculated fluxes with the pivot point being on the radical carbon atom. In the state counts we also accounted for the OH rotor, but not the C–O one. We found that rotation around the latter bond has a very high barrier and also leads to isomerization at energies higher than the experimental range.

 $CH_3OOH^+ \rightarrow {}^3CH_3O^+ + OH$ (1b)

Figure SI–2.2. Energy profiles along the O–O bond in CH_3OOH^+ at various levels of theory. All curves are fully relaxed and ZPE-exclusive. The asymptote is the zero of energy.

To account for the multireference character we calculated the energy along the breaking bond at the CASPT2(3e,3o)/aug-cc-pVTZ level of theory in C_s point group symmetry (A" state) shown in Fig. SI–2.2. The active space consisted of the radical orbital and the bonding and antibonding orbitals of the breaking bond, or, thinking in terms of the fragments, the radical orbital of the OH fragment and the two orbitals occupied by the unpaired electrons of the ${}^{3}CH_{3}O^{+}$ located on its O atom. The product is ${}^{3}CH_{3}O^{+}$ because the ZPE-exclusive asymptote at this level is 3.04 eV relative to $CH_{3}OOH^{+}$ and is correlated with the triplet ${}^{3}CH_{3}O^{+}$ + OH, for which the ZPE-exclusive F12//M06-2X energy is 3.10 eV. ${}^{3}CH_{3}O^{+}$ is a stable ion and isoelectronic with O₂; the singlet state at the ${}^{3}CH_{3}O^{+}$. However, since ${}^{1}CH_{2}OH^{+}$ is 3.99 eV more stable than ${}^{3}CH_{3}O^{+}$, it is likely that the latter also eventually forms ${}^{1}CH_{2}OH^{+}$, but in the mass spectrum

and breakdown curves the two species, if formed this way, are indistinguishable.

Without orbital symmetries we found that it is difficult to converge the doublet state for channel 1b. At the same time the corresponding quartet state, a state that is much easier to converge, becomes degenerate above ~3 Å separation with the doublet one, and the geometry relaxation effects are also negligible in this region. Therefore, we sampled the interfragmental potential at the CASPT2(3e,3o)/aug-cc-pVDZ level of theory for the quartet state between 4 and 20 Å center-of-mass separation to variationally determine the bottleneck for this dissociation channel. We calculated ~6000 points. Due to the spin-orbit coupling of the OH radical we also lowered the asymptote by 70 cm-1 (~0.009 eV) but ignored the rovibronic correction for the OH state count that only affects the lowest ~0.1 eV part of the kinetics.

$CH_3OOH^+ \rightarrow CH_3^+ + HO_2$ (1c)

In addition to M06-2X/MG3S we also scanned this bond using MP2/6-311++G(d,p), and found no barrier either. We also found that above ~3.5 Å, where the potential is already very attractive (– 0.4 eV), the fragment geometries are essentially the same as at large separation, demonstrated by the rigid CASPT2(1e,1o)/aug-cc-pVDZ scans, see SI-2.

Figure SI–2.3. Energy profiles along the C–O bond in CH_3OOH^+ at various levels of theory. All curves are fully relaxed and ZPE-exclusive, unless noted in the legend. The asymptote is the zero of energy.

For channel 1c we calculated the number of states using VRC-TST at the CASPT2(1e,1o)/aug-cc-pVDZ level without correcting for geometry relaxation effects. The CASPT2 energies are essentially the same as the MP2 ones in this case. We found that the results are fairly sensitive to the dividing surface optimization in this case, therefore, we sampled interfragmental distances between 2 and 20 Å and placed the pivot points on the center of masses of the two fragments, and at close distances also above and below the plane of the methyl group at 0.4, 0.8, and 1.0 Å. In total we generated 51 dividing surfaces and \sim 17000 samples.

$CH_2OOH^+ \rightarrow CHO^+ + H_2O$ (7c)

Figure SI–2.4. Energy profiles along the O–O bond in CH_2OOH^+ at various levels of theory. All curves are ZPE-exclusive, and the energies are shown relative to the neutral CH_2OOH . S: geometries along the singlet scan (the OH moiety simply goes away); T: geometries along the triplet scan (the OH moiety stays close to the CH_2O part and abstracts an H).

References in SI

1. L. B. Harding, S. J. Klippenstein, and A. W. Jasper, *Phys. Chem. Chem. Phys.* 2007, **9**, 4055.