A Quantum-Mechanical investigation of Oxygen Vacancy and Copper Doping in the Orthorhombic CaSnO₃ Perovskite

Jefferson Maul, S. Casassa, and Alessandro Erba

Dipartimento di Chimica, Universitá di Torino, via Giuria 5, 10125, Torino, Italy*

I. M. G. Santos

Núcleo de Pesquisa e Extensão: Laboratório de Combustíveis e Materiais, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil

J. R. Sambrano

Computational Simulation Group, CDMF-UNESP, São Paulo State University, CEP 17033-360, Bauru, SP, Brazil

Animation of the vibrational modes of $CaSnO_3$ for the pristine and oxygen vacancy cases, as calculated at PBE level, can be found in the following links respectively:

http://www.crystal.unito.it/vibs/CaSnO3/index.html?name=CaSnO3_Pristine_PBE.xyz http://www.crystal.unito.it/vibs/CaSnO3/index.html?name=CaSnO3_Oxygen_Vacancy_PBE.xyz

TABLE I: Bond lengths of oxygen atoms toward Sn in octahedral site and its defective counterpart (XX represent vacant atom), in both position O_{ap} and O_{eq} and calculation level (PBE and PBE0). The bond lengths are given in Å and the volume (D_{VOL}) is given in % tanking as reference the bulk volume.

Level	Position Method	Config.	D_{VOL}	$O_{ap}1/XX$	$O_{ap}2$	$O_{eq}1$	$O_{eq}2$	$O_{eq}3/XX$	$O_{eq}4$
PBE	Bulk	closed-shell	ref	2.102	2.102	2.095	2.095	2.098	2.098
PBE0	Bulk	closed-shell	ref	2.070	2.070	2.066	2.066	2.069	2.069
		closed-shell	-0.04	-	2.155	2.121	2.112	2.127	2.124
	AR	singlet	-0.04	-	2.155	2.121	2.112	2.127	2.124
	O_{ap}	triplet	0.35	-	2.079	2.123	2.126	2.134	2.133
		closed-shell	-0.03	2.145	2.150	2.122	2.111	2.126	2.123
DDE	GH	singlet	-0.03	2.134	2.150	2.122	2.111	2.126	2.123
TDL		triplet	0.36	2.029	2.076	2.122	2.125	2.132	2.131
		closed-shell	-0.02	2.129	2.128	2.122	2.130	-	2.168
	AR	singlet	-0.02	2.129	2.128	2.122	2.130	-	2.168
	O_{eq}	triplet	0.37	2.123	2.140	2.124	2.122	-	2.079
		closed-shell	0.00	2.127	2.127	2.120	2.127	1.744	2.154
	GH	singlet	0.00	2.128	2.127	2.121	2.128	1.898	2.155
		triplet	0.38	2.121	2.136	2.121	2.120	2.159	2.075
		closed-shell	-0.10	-	2.137	2.090	2.079	2.093	2.091
PBE0	AR	singlet	-0.10	-	2.137	2.090	2.079	2.093	2.091
	O_{ap}	triplet	0.28	-	2.053	2.102	2.111	2.121	2.112
		closed-shell	-0.09	2.201	2.134	2.091	2.080	2.093	2.092
	GH	singlet	-0.12	2.665	2.136	2.088	2.078	2.092	2.090
		triplet	0.28	2.181	2.050	2.102	2.111	2.119	2.111

^{*}Electronic address: jmauldea@unito.it

TABLE II: Atomic net charge (q) and spin density (μ) as calculated by both Mulliken (q_M and μ_M) and Hirshfeld-I (q_H and μ_H) of SnO ₆
octahedral site and vacancy alike at PBE and PBE0 level. Two oxygen position (O_{ap} and O_{eq}) taking as reference the central Sn are displayed,
with quantities given in e .

Level	Position	Method	Config.	q/μ	Sn	O _{ap} 1/XX	O _{ap} 2	$O_{eq}1$	$O_{eq}2$	$O_{eq}3$	$O_{eq}4$
	Bulk PBF			q_M	1.516	-1.010	-1.010	-1.014	-1.014	-1.014	-1.014
	Durkide		alacad shall	q_H	2.258	-1.2/4	-1.2/4	-1.2/2	-1.2/2	-1.2/2	-1.2/2
			closed-shell	q_M	1 246	-	-1.013	-0.990	-1.002	-0.993	-0.993
			singlet	<i>q</i> _H	0.070	-	-1.175	-0.000	-1.177	-0.005	-0.005
			singlet	4M au	1 246	-	-1 173	-1 172	-1.177	-1 176	-1 168
			triplet	ЧН ДМ	0.991	-	-1.006	-0.975	-0.989	-0.981	-0.979
		AR	unpier	qm Aн	1.350	-	-1.174	-1.183	-1.184	-1.183	-1.177
				μ_M	0.492	-	0.001	0.073	0.045	0.055	0.070
				μ_H	0.367	-	0.005	0.095	0.072	0.082	0.091
			closed-shell	q_M	1.055	0.174	-1.014	-1.001	-0.998	-0.990	-0.994
	0			\bar{q}_H	1.220	0.000	-1.169	-1.166	-1.170	-1.168	-1.162
	O_{ap}		singlet	q_M	1.056	0.175	-1.014	-1.001	-0.998	-0.990	-0.995
				q_H	1.227	0.000	-1.170	-1.16/	-1.171	-1.169	-1.163
		GH	triplet	q_M	1.059	0.139	-1.002	-0.9/3	-0.992	-0.985	-0.9//
				q_H	1.327	0.000	-1.275	-1.1//	-1.1/8	-1.273	-1.1/2
				μ_M	0.417	0.120	0.002	0.071	0.045	0.055	0.008
			closed_shell	μ_H	0.378	-0.987	_0.005	-1 001	_0.007	0.077	-1.018
			closed-shell	<i>YM</i> <i>A</i> H	1 250	-1 170	-1 174	-1 177	-1 168	_	-1 174
			singlet	ЧН ДМ	0.987	-0.987	-0.993	-1.001	-0.991	-	-1.018
			Shight	QH QH	1.250	-1.170	-1.174	-1.177	-1.168	-	-1.174
PBE		٨D	triplet	q_M	1.025	-0.970	-0.977	-0.985	-0.978	-	-1.010
100		AK	1	q_H	1.413	-1.180	-1.186	-1.187	-1.181	-	-1.180
				$\tilde{\mu}_M$	0.454	0.067	0.053	0.048	0.061	-	0.000
				μ_H	0.338	0.087	0.075	0.072	0.084	-	0.004
			closed-shell	q_M	1.093	-0.990	-0.992	-0.994	-0.996	0.176	-1.016
	0		-:1-4	q_H	1.242	-1.166	-1.1/0	-1.1/1	-1.163	0.000	-1.1/1
	Oeq		singlet	q_M	1.088	-0.990	-0.993	-0.995	-0.997	0.180	-1.01/
			triplet	q_H	1.237	-0.975	-1.170	-1.1/1	-0.086	0.000	-1.170
		GH	uipici	<i>YM</i> <i>A</i> H	1 400	-1.176	-1 181	-1 272	-1 176	0.000	-1 178
				ЧН Цм	0.370	0.065	0.052	0.046	0.061	0.138	0.001
				Цн	0.345	0.081	0.069	0.066	0.079	0.000	0.004
	Bulk PBE0			<i>a</i> _M	1.762	-1.115	-1.115	-1.115	-1.115	-1.115	-1.115
				q_H	2.409	-1.355	-1.355	-1.351	-1.351	-1.351	-1.351
			closed-shell	\bar{q}_M	1.163	-	-1.120	-1.090	-1.103	-1.097	-1.097
				q_H	1.479	-	-1.276	-1.276	-1.277	-1.281	-1.273
			singlet	q_M	1.162	-	-1.120	-1.090	-1.104	-1.097	-1.097
			4	q_H	1.4//	-	-1.2/6	-1.2//	-1.283	-1.280	-1.2/3
		AR	triplet	q_M	1.128	-	-1.112	-1.0/5	-1.092	-1.08/	-1.082
				q_H	1.409	0.000	-1.202	-1.263	-1.204	-1.204	-1.201
				μ_M	0.055	0.000	0.001	0.077	0.043	0.034	0.075
PBE0			closed-shell	μ_H	1 244	0 184	-1 120	-1 099	-1 101	-1 101	-1 096
			closed shell	ЧM AH	1.452	0.000	-1.273	-1.272	-1.276	-1.273	-1.267
	O_{eq}		singlet	am am	1.226	0.118	-1.120	-1.101	-1.103	-1.100	-1.098
	1		0	q_H	1.501	0.000	-1.279	-1.278	-1.283	-1.280	-1.274
		СЦ	triplet	q_M	1.218	0.184	-1.111	-1.084	-1.089	-1.091	-1.081
		ОП		\dot{q}_H	1.462	0.000	-1.258	-1.279	-1.276	-1.276	-1.275
				μ_M	0.562	0.167	-0.001	0.079	0.043	0.054	0.072
				μ_H	0.495	0.000	0.001	0.108	$0.0^{\prime}/1$	0.082	0.098

FIG. 1: Wannier centroid's representation of vacancy containing site. Oxygen and Tin atoms are labeled, and the spheres between them represents the centroid of the Wannier localization. The smaller one are characterized as alpha electrons and the other the beta ones.

TABLE IV: Bond lengths of oxygen atoms toward Sn and Cu in octahedral site and its defective counterpart (XX represent vacant atom), at O_{ap} as calculated at PBE0 level and GH method. The bond lengths are given in Åand the volume (D_{VOL}) is given in % tanking as reference the bulk volume.

Atom	Neighbor	D _{VOL}	O _{ap} 1/XX	O _{ap} 2	$O_{eq}1$	$O_{eq}2$	O _{eq} 3	O _{eq} 4
Sn	bulk	ref	2.070	2.070	2.066	2.066	2.069	2.069
	no vacancy	-0.37	2.137	2.066	2.052	2.058	2.061	2.051
	first neighbor	-0.15	1.778	1.969	2.033	2.026	2.038	2.026
	second neighbor	0.04	1.838	1.976	1.961	2.018	2.040	2.066
	third neighbor	0.09	2.153	1.978	2.052	2.065	2.009	1.968
	no vacancy	-0.37	1.945	1.945	2.071	2.072	1.959	1.960
Cu	first neighbor	-0.15	2.551	2.088	2.012	2.038	2.011	2.040
	second neighbor	0.04	2.034	2.043	2.048	2.069	2.253	2.170
	third neighbor	0.09	2.037	2.047	2.165	2.296	2.048	2.092

FIG. 2: Band structure of $CaTiO_3$ at PBE0 level for the three electronic configuration closed-shell, singlet and triplet. The methods **AR** and **GH** are placed into the left and right columns, respectively. Fermi energy are placed as a straight red line.

FIG. 3: Spin density 3D maps (cutoff 0.001 e/a_0^3) for the CaTiO₃ (a) and (c) are two views of the **AR** model and (b) and (d) are two views of the **GH** model. All calcium atoms have been removed for clarity.

FIG. 4: Wannier centroid's representation of the doping site. Oxygen and Copper atoms are labeled, and the spheres between them represents the centroid of the Wannier localization. The smaller one are characterized as alpha electrons and the other the beta ones.

TABLE V: Atomic net charge (q) and spin density (μ) as calculated by both Mulliken (q_M and μ_M) and Hirshfeld (q_H and μ_H) of SnO₆ and CuO₆ "octahedral" sites and its defective sites or surrounds. Both quantities are given in |e|. The Sn atom is always a first neighbor of the vacancy, apart from the NV case in which it is neighbor of the doped site.

Atom	Cu Neighbor	Method	q/μ	Sn	O _{ap} 1/XX	O _{ap} 2	$O_{eq}1$	O _{eq} 2	O _{eq} 3	O _{eq} 4
Bulk	-	-	q_M	1.762	-1.115	-1.115	-1.115	-1.115	-1.115	-1.115
			q_H	2.409	-1.355	-1.355	-1.351	-1.351	-1.351	-1.351
	no vacancy	-	q_M	1.737	-0.945	-1.113	-1.116	-1.104	-1.110	-1.110
			q_H	2.376	-1.054	-1.353	-1.351	-1.338	-1.344	-1.345
	first neighbor	AR	q_M	1.546	-	-1.087	-1.078	-1.073	-1.072	-1.067
			q_H	2.275	-	-1.334	-1.325	-1.328	-1.322	-1.318
	first neighbor	GH	q_M	1.565	0.080	-1.081	-1.072	-1.071	-1.071	-1.069
Sn			q_H	2.265	0.000	-1.334	-1.324	-1.325	-1.319	-1.316
	second neighbor	AR	q_M	1.495	-	-1.086	-1.039	-1.082	-1.078	-1.086
			q_H	2.230	-	-1.337	-1.246	-1.323	-1.333	-1.338
	second neighbor	GH	q_M	1.522	0.072	-1.083	-1.042	-1.078	-1.081	-1.086
			q_H	2.221	0.000	-1.337	-1.242	-1.322	-1.331	-1.335
	third neighbor	AR	q_M	1.489	-	-1.080	-1.080	-1.094	-1.067	-1.042
			q_H	2.230	-	-1.334	-1.347	-1.340	-1.315	-1.248
	third neighbor	GH	q_M	1.513	0.075	-1.076	-1.073	-1.094	-1.072	-1.046
			q_H	2.223	0.000	-1.334	-1.344	-1.341	-1.312	-1.245
	no vacancy	-	q_M	0.889	-0.945	-0.949	-1.007	-1.007	-0.954	-0.953
			q_H	0.926	-1.054	-1.061	-1.150	-1.151	-1.066	-1.064
			μ_M	0.469	-0.026	0.012	0.231	0.228	0.034	0.003
			μ_H	0.519	-0.038	0.019	0.207	0.205	0.031	-0.004
	first neighbor	AR	q_M	0.689	-	-1.103	-1.068	-1.073	-1.064	-1.068
			q_H	0.668	-	-1.275	-1.220	-1.215	-1.211	-1.220
			μ_M	0.712	-	0.000	0.058	0.064	0.068	0.059
			μ_H	0.728	-	-0.002	0.055	0.059	0.062	0.056
	first neighbor	GH	q_M	0.720	0.080	-1.099	-1.069	-1.078	-1.068	-1.073
			q_H	0.661	0.000	-1.274	-1.218	-1.214	-1.208	-1.218
			μ_M	0.712	-0.003	0.000	0.059	0.064	0.068	0.059
Cu			μ_H	0.727	0.000	-0.002	0.055	0.060	0.063	0.056
	second neighbor	AR	q_M	0.798	-1.092	-1.091	-1.093	-1.093	-1.039	-1.106
			q_H	0.747	-1.235	-1.235	-1.232	-1.239	-1.246	-1.288
			μ_M	0.758	0.053	0.053	0.051	0.048	0.001	0.000
			μ_H	0.766	0.051	0.052	0.049	0.047	-0.002	-0.002
	second neighbor	GH	q_M	0.798	-1.092	-1.091	-1.093	-1.094	-1.042	-1.106
			q_H	0.746	-1.234	-1.234	-1.232	-1.239	-1.242	-1.288
			μ_M	0.757	0.053	0.053	0.051	0.048	0.001	0.000
			μ_H	0.766	0.051	0.052	0.049	0.047	-0.002	-0.002
	third neighbor	AR	q_M	0.792	-1.092	-1.088	-1.108	-1.042	-1.086	-1.098
			q_H	0.742	-1.235	-1.231	-1.283	-1.248	-1.233	-1.243
			μ_M	0.755	0.055	0.055	0.000	0.001	0.054	0.046
			μ_H	0.764	0.053	0.053	-0.002	-0.002	0.052	0.046
	third neighbor	GH	q_M	0.792	-1.092	-1.087	-1.108	-1.046	-1.087	-1.098
			q_H	0.741	-1.234	-1.228	-1.283	-1.245	-1.233	-1.243
			μ_M	0.755	0.055	0.055	0.000	0.001	0.054	0.046
			μ_H	0.763	0.053	0.053	-0.002	-0.002	0.052	0.046

FIG. 5: CaSnO3 3D interaction densities (difference between the electron density of the interacting system and the superposition of atomic non-interacting densities) with a cutoff 0.015 e/a_0^3 (a) Pristine System (b) Restricted (c) Singlet (d) Triplet. The Calcium atoms are omitted for a better view. The grey small ball presents the "ghost" atom, a.k.a. vacant atom.