Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supplementary Material for Deuterium Isotope Effect in Fluorescence of Gaseous Oxazine Dyes

by Matthew Kusinski^{1,†}, Jayashree Nagesh^{1,2,3,†}, Margarita Gladkikh^{1,2},

Artur F. Izmaylov^{1,2}* and Rebecca A. Jockusch¹*

¹Department of Chemistry, University of Toronto, ON Canada

² Department of Physical and Environmental Sciences, University of Toronto Scarborough, ON Canada

³Current address: Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India

[†]Co-first author

*Corresponding Authors: e-mail:

<u>rebecca.jockusch@utoronto.ca</u>

artur.izmaylov@utoronto.ca

Submitted to Physical Chemistry Chemical Physics, 2018.

1. Supplementary Experimental Data and Methods

Table S1: Selected experimental parameters employed for relative brightness measurements

Species	m/z	Accumulation Times (ms)	Irradiation Power (mW)	Total Fluorescence Collection Time (s)
cresyl violet	262	95,110,125	4.88	75
d-cresyl violet	266	100,125,150	4.88	75
darrow red	304	18,25,30	0.55	600
d-darrow red	307	18,42,58	0.55	600
oxazine 4	296	12,32,50	3.72	288
d-oxazine 4	298	12,32,50	3.72	288
oxazine 170	332	8,20,32.5	8.66	336
d-oxazine 170	334	15,20,28	8.66	336

Figure S1: Overlay of mass spectrometry (MS) data from protonated (red) and deuterated (blue) forms of CV, DR, OX4 and OX170. The mass of each monoisotopic peak is noted on the spectra.

Figure S2: *Emission spectra of four oxazine dyes in methanol (red) and in deuterated methanol (blue). Dye concentrations in each solution were* $\leq 0.5 \mu M$.

Solution Spectroscopy

All dyes were dissolved without any further purification in the condition they were obtained from the seller (Sigma Aldrich, MO, USA) in methanol (ACS grade, Sigma-Aldrich, MO, USA) or deuterated methanol (CH₃OD, Sigma-Aldrich, MO, USA) to make 0.5 μ M solutions. Measurements were made using a LS-55 fluorescence spectrophotometer (PerkinElmer, MA, USA).

2. Supplementary Computational Information

1. Estimation of thermal energy available in S₁ during the emission and corresponding temperature

Here, we assume that the dye undergoes vertical absorption from S_0 minimum. Given that the experiments being carried out under low pressure of $<10^{-5}$ atm, we also assume that each molecule undergoes complete vibrational relaxation in the excited state before any collision such that the initial excitation energy is equally distributed amongst all the vibrations.

At 0K, before electronic excitation, the total energy of a molecule in S_0 is $E_0 = E_{elec}^0 + E_{zpe}^0$ (Figure S2). At finite temperature T, there is thermal energy due to translational, rotational and additional vibrational motion, and the total energy in the ground state is $E_0 = E_{elec}^0 + E_{zpe}^0 + \Delta E_{vib}(T) + \Delta E_{rot}(T) + \Delta E_{trans}(T)$, where

$$\Delta E_{trans}(T) = 1.5 RT$$

 $\Delta E_{rot}(T) = RT$ and

Figure S3: Schematic potential energy surfaces and relevant quantities

 $\Delta E_{vib}(T) = \sum_{i} \mathrm{R}\Theta_{i}/(\exp\left(\frac{\Theta_{i}}{T}\right) - 1)$, where $\Theta_{i} = hv_{i}/k_{B}$ is the vibrational temperature of ith normal mode with frequency v_{i} . The

vibrational temperature of ith normal mode with frequency ν_i . The symbols R, h and k_B stand for universal gas constant, Planck's constant and Boltzmann's constant. In the calculations an initial ion temperature of 315K is employed to reproduce estimated experimental conditions.

Upon vertical excitation, the total energy in S₁ is $E_0 + \Delta E_{elec} = E_{tot}$ at S₀ minimum geometry. In S₁, the difference between E_{tot} and the sum $E_{elec}^1 + E_{zpe}^1$ (at S₁ minimum geometry) is the thermal energy $E_{thermal}$ available in S₁, and we can calculate the temperature corresponding to this thermal energy by solving the equation $E_{thermal} - (\Delta E_{trans}(T_{es}) + \Delta E_{rot}(T_{es}) + \Delta E_{vib}(T_{es})) = 0$, where T_{es} is the unknown variable.

Table S2: Thermal energy and corresponding temperature in S₁ upon excitation from S₀ minimum assuming a starting temperature of 315 K.

Dye	E _{thermal} (eV)		$T_{es}(K)$	
	Н	D	Н	D
Cresyl Violet	0.69	0.71	378.0	376.5
Oxazine 170	0.81	0.81	338.7	338.0
Oxazine 4	0.76	0.76	338.8	337.9
Darrow Red	0.74	0.75	362.0	360.4

2. Cresyl Violet data

(a) S₀ optimized geometry obtained with TPSS/6-31G* (α_1 =0.0°, α_2 =0.01°)

С	-2.887657	0.308418	0.010592
С	-1.865235	-0.690312	0.004255
С	-0.462734	-0.298586	0.004192
С	-0.162523	1.104541	0.010642
С	-1.137373	2.087714	0.016833
С	-2.499929	1.716611	0.016938
С	2.143154	0.573382	0.004783
С	1.787415	-0.814654	-0.001515

С	2.852821	-1.763202	-0.007666
н	2.592442	-2.818832	-0.012470
С	4.163512	-1.347331	-0.007479
С	4.490271	0.051915	-0.001085
С	3.451891	1.017728	0.005113
н	-0.844313	3.135280	0.021548
н	4.971793	-2.076404	-0.012192
н	3.668389	2.083526	0.010029
С	-4.241180	-0.105650	0.010482
С	-4.574924	-1.455983	0.004341
н	-5.621442	-1.752957	0.004369
С	-3.561494	-2.434750	-0.001888
н	-3.826254	-3.490141	-0.006683
С	-2.223380	-2.055570	-0.001925
н	-5.050922	0.622292	0.015197
н	-1.428409	-2.796904	-0.006680
0	1.140615	1.513515	0.010804
Ν	0.499548	-1.227873	-0.001720
Ν	-3.437949	2.689012	0.023019
н	-4.430260	2.487179	0.023420
н	-3.172769	3.668309	0.027438
Ν	5.791209	0.435642	-0.001037
Н	6.541345	-0.246532	-0.005451
н	6.058305	1.413852	0.003363

(b) S_1 optimized geometry using TD-TPSS/6-31G* (planar minimum)

С	-2.892220	0.319770	-0.001650
С	-1.881220	-0.693560	0.012993
С	-0.465194	-0.341461	0.012130
С	-0.164711	1.079547	-0.006623
С	-1.130514	2.070774	-0.001937
С	-2.496873	1.727410	0.012995
С	2.113279	0.519055	-0.006623
С	1.791761	-0.839658	0.013353
С	2.873257	-1.755594	0.023534
Н	2.628782	-2.816039	0.039231
С	4.204686	-1.347781	0.013552
С	4.518384	0.031921	-0.007417
С	3.452979	0.986222	-0.017301
Н	-0.821074	3.114246	-0.001406
Н	5.004024	-2.085097	0.021500
Н	3.643908	2.057217	-0.033060
С	-4.241053	-0.091189	-0.037044
С	-4.588522	-1.448884	-0.036396
Н	-5.639281	-1.730160	-0.064624
С	-3.591868	-2.438390	-0.004811
Н	-3.864373	-3.491395	-0.002866
С	-2.251008	-2.060874	0.015330
Н	-5.046089	0.640180	-0.083772
Н	-1.454010	-2.800258	0.029268

O1.1559631.487107-0.017938N0.454570-1.2957060.022060N-3.4381252.7131060.009512H-4.4103192.5177150.215765H-3.1537693.6821980.107665N5.8042270.491206-0.017837H6.590184-0.151064-0.012416H6.0181861.482669-0.035597

(c) S_1 optimized geometry using TD-TPSS/6-31G* after twisting NH₂ groups (twisted minimum)

			-
С	0.019595	-0.018820	-0.004147
С	0.045739	-0.009014	1.435669
С	1.303349	-0.011903	2.146479
С	2.478215	-0.024262	1.411967
С	2.496412	-0.034276	-0.014574
С	1.289758	-0.031184	-0.650552
С	3.742445	-0.018159	3.394089
С	2.497037	-0.005523	4.123813
С	2.602010	0.003748	5.551276
Н	1.674791	0.013304	6.118754
С	3.826323	0.000725	6.182336
С	5.041940	-0.011869	5.425297
С	4.979526	-0.021366	4.008481
Н	3.450689	-0.043788	-0.534611
Н	3.881726	0.007973	7.269780
Н	5.884394	-0.031049	3.404619
С	-1.236825	-0.015650	-0.677579
С	-2.413502	-0.003306	0.044214
Н	-3.367097	-0.000986	-0.479884
С	-2.387858	0.006375	1.463475
Н	-3.325130	0.016074	2.016084
С	-1.184555	0.003570	2.142839
Н	-1.293842	-0.022841	-1.765488
Н	-1.141269	0.010830	3.228390
0	3.718850	-0.027744	2.013738
Ν	1.285404	-0.002197	3.537602
Ν	1.298624	-0.041491	-2.127770
Н	1.264299	0.822779	-2.675084
Н	1.253490	-0.912800	-2.663007
Ν	6.241849	-0.014401	6.068579
Н	7.117901	-0.024321	5.559552
Н	6.295177	-0.008776	7.080475

(d) Parameters used in spectra calculation. Refer to Gaussian website for description of these keywords.

Keyword section: Freq=(FC,ReadFC,ReadFCHT)

ReadFCHT section: Prescreening=(MaxInt=5000,MaxC1=200,MaxC2=200),

MaxStatesI=1766,HWHM=50.0, Temperature=(value=T), where T=T_{es} is chosen from Table S1.

Oscillator strength plots for α_1 and α_2 . (e)

Figure S4. (a-b) Electronic energies (shifted by the energy of the planar S_1 minimum) and (c-d) oscillator strength along the scan of dihedral torsional angles of the NH₂ groups in CV. α_1 and α_2 correspond to D(1,6,27,28) and D(11,12,30,31), respectively.

Frequency (cm⁻¹)

(f) Figure S5 Comparison of deuterated and non-deuterated forms of CV showing differences only in a small region of the spectrum.

(g)	T ₁ op	timized geor	netry using T	D-TPSS/6-31	G*
		0	0 00 1101	0.0040.00	0.00 (515	

TIOP	timized Scon	neary asing r	D 1100/0 010
С	-2.894181	0.324260	0.006515
С	-1.860077	-0.671411	0.003973
С	-0.467220	-0.296306	0.013486
С	-0.166003	1.097205	0.025055
С	-1.142340	2.083188	0.027741
С	-2.510658	1.728188	0.018828
Ċ	2.131002	0.564188	0.032017
C	1 776065	-0 827284	0.020265
C	2 849982	-1 766489	0.018681
н	2.549740	-2 821959	0.009863
C	4 168078	-1 355515	0.007866
C	4.100070	0.038382	0.027800
C	3 440100	1.002753	0.037337
с u	0.830070	3 128504	0.041303
п	-0.839970	2.027200	0.030821
п	4.973934	-2.08/399	0.020415
Н	3.655331	2.069203	0.050168
C	-4.237755	-0.10/8/0	-0.003040
C	-4.560565	-1.468203	-0.014823
H	-5.606103	-1./69093	-0.022049
С	-3.544296	-2.441048	-0.017315
Н	-3.801107	-3.498053	-0.026507
С	-2.209994	-2.046348	-0.007962
Н	-5.056644	0.610185	-0.001547
Н	-1.402231	-2.773418	-0.009563
0	1.144645	1.530343	0.034429
Ν	0.487679	-1.276517	0.010885
Ν	-3.444283	2.716271	0.021583
Н	-4.438945	2.525528	0.016450
Н	-3.168060	3.692481	0.031216
Ν	5.787781	0.440934	0.048414
Н	6.547712	-0.232097	0.047409
Н	6.041883	1.423633	0.056558
T ₂ op	timized geon	netry using T	D-TPSS/6-31G*
С	-2.895154	0.321297	-0.003241
С	-1.873777	-0.699638	0.007620
С	-0.463432	-0.355251	0.015301
С	-0.167504	1.021523	0.011965
С	-1.136985	2.046281	0.011131
С	-2.509746	1.714054	0.010576
С	2.119779	0.503663	0.017155
С	1.780273	-0.871781	0.020904
С	2.881131	-1.763708	0.024880
Ĥ	2.664084	-2.829660	0.030823
С	4.209031	-1.321629	0.024841
C	4 525506	0.058184	0.020251
C	3 448213	0.987097	0.015517
н	-0 807709	3 083598	0.012392
н	5 014288	-2 053986	0.027279
н	3 618956	2.055900	0.005147
C	-4 258571	-0.084477	-0.028120
C C	-4 60/250	-0.004477	-0.020123
с u	-4.004339	-1.424000	-0.050644
п С	-3.032002	-1./13990 1 /12/20	0.002401
	-3.3740/0	-2.422429	-0.0090/4
Н	-3.8/3000	-3.4/3090	-0.011330
U T	-2.25590/	-2.001896	0.000380
H	-5.056012	0.000036	-0.058313
Н	-1.40/349	-2.809816	0.010093
U	1.144264	1.403333	0.013015

(h)

	Ν	0.484933	-1.326245	0.022071
	Ν	-3.428278	2.724010	0.000258
	Η	-4.416239	2.546388	0.134182
	Η	-3.131225	3.689301	0.091964
	Ν	5.816840	0.512326	-0.012164
	Н	6.589942	-0.134111	0.102571
	Н	6.028388	1.494420	0.123936
(i)	T ₃ op	timized geor	netry using T	TD-TPSS/6-31G*
	С	-2.872008	0.336415	-0.005821
	С	-1.862322	-0.653892	0.025682
	С	-0.459407	-0.287212	0.029873
	С	-0.168514	1.087810	0.001369
	С	-1.155040	2.087796	0.007089
	С	-2.504128	1.745466	0.016104
	С	2.131004	0.551770	0.017254
	С	1.790705	-0.831512	0.046082
	С	2.848341	-1.764683	0.063925
	Η	2.597466	-2.822365	0.085598
	С	4.179508	-1.345261	0.054401
	С	4.489939	0.043519	0.025715
	С	3.447015	0.998974	0.006916
	Н	-0.842192	3.129993	0.016614
	Н	4.984606	-2.077560	0.069331
	Н	3.654040	2.066606	-0.017085
	С	-4.229920	-0.108625	-0.099174
	С	-4.573523	-1.478478	-0.098433
	Н	-5.621033	-1.761894	-0.169620
	С	-3.571001	-2.454584	-0.018978
	Н	-3.825696	-3.511459	-0.011290
	С	-2.236116	-2.055456	0.036770
	Н	-5.028857	0.621484	-0.210009
	Н	-1.426438	-2.779067	0.088874
	0	1.143475	1.517541	-0.004005
	Ν	0.473563	-1.279414	0.056479
	Ν	-3.499192	2.707809	-0.035789
	Н	-4.362287	2.525379	0.469552
	Н	-3.190880	3.671117	0.073177
	Ν	5.802637	0.448954	0.015454
	Н	6.561406	-0.224190	0.030785
	Η	6.055016	1.431348	-0.004269
	TOO			1 1 (75.1.1.)

(j) ISC rates for S_{1} -> T_{2} and S_{1} - T_{3} channels (Table S3) Table S3: ISC rates in CV for triplet channels

State		ISC rate (s ⁻¹)		
	Н	D		
T ₂	4.9×10^{6}	4.4×10^6		
T ₃	3.1×10^4	2.6×10^4		

3. Oxazine 170 data

(a) S₀ optimized geometry using TPSS/6-31G* (α_1 =180.0°, α_2 =180.0°)

-	-		
С	3.381505	-0.574373	-0.000006
С	2.247365	-1.443308	-0.000008
С	0.900788	-0.888893	-0.000001
С	0.771757	0.537381	0.000007
С	1.855131	1.401788	0.000007
С	3.167879	0.876981	0.000000
С	-1.581001	0.282914	0.000009
С	-1.394278	-1.135175	0.000001

С	-2.565950	-1.948312	-0.000002
Н	-2.421546	-3.027024	-0.000008
С	-3.834140	-1.407753	0.000002
С	-3.978021	0.037661	0.000010
С	-2.830186	0.873482	0.000014
Η	1.674813	2.472279	0.000013
Η	-2.914830	1.956033	0.000020
С	4.672822	-1.154532	-0.000012
С	4.840266	-2.535591	-0.000019
Η	5.843565	-2.956427	-0.000023
С	3.716283	-3.384393	-0.000022
Η	3.850104	-4.464293	-0.000029
С	2.436124	-2.842800	-0.000017
Η	5.569162	-0.535500	-0.000009
Η	1.554890	-3.479297	-0.000018
0	-0.474801	1.099201	0.000012
Ν	-0.165407	-1.699434	-0.000004
Ν	4.225374	1.717596	-0.000002
Η	5.156847	1.314257	-0.000013
Ν	-5.223953	0.574471	0.000015
Η	-6.012012	-0.066605	0.000012
С	4.160050	3.189013	-0.000001
Η	3.603527	3.519155	0.889429
Η	3.603514	3.519157	-0.889421
С	5.571851	3.779011	-0.000011
Η	6.129997	3.471241	-0.894018
Η	5.512548	4.873111	-0.000009
Η	6.130011	3.471239	0.893988
С	-5.062932	-2.287812	0.000000
Η	-5.687938	-2.113356	0.889968
Η	-5.687940	-2.113348	-0.889966
Η	-4.778938	-3.345155	-0.000005
С	-5.543009	2.009704	0.000022
Η	-5.091600	2.475419	0.889001
Η	-5.091603	2.475427	-0.888953
С	-7.059427	2.215216	0.000025
Η	-7.518680	1.772368	0.893631
Η	-7.286221	3.287220	0.000031
Η	-7.518683	1.772376	-0.893583

(b) S₁ optimized geometry using TD-TPSS/6-31G* (planar minimum). There were convergence issues in the solution of Kohn-Sham equations when trying to find the optimized geometry with the twisted configuration of the amino groups, so we are unable to report that data. The lack of convergence indicates the presence of multi-configuration character in the ground electronic state, the exploration of which is beyond the scope of the current analysis.

	*	•	
С	3.391666	-0.574245	-0.000010
С	2.265287	-1.455931	0.000006
С	0.900788	-0.935660	0.000049
С	0.770873	0.511330	0.000095
С	1.850111	1.379256	0.000099
С	3.169815	0.877237	0.000039
С	-1.559190	0.225578	0.000081

С	-1.397990	-1.163342	0.000059
С	-2.573988	-1.953450	0.000034
Н	-2.442461	-3.034572	0.000023
С	-3.856843	-1.413333	0.000023
С	-3.987989	0.014530	0.000027
С	-2.829550	0.838785	0.000065
Η	1.657408	2.448234	0.000127
Η	-2.892611	1.923209	0.000078
С	4.679087	-1.151857	-0.000056
С	4.857551	-2.540998	-0.000080
Η	5.866452	-2.948750	-0.000111
С	3.746851	-3.399250	-0.000059
Н	3.886149	-4.478108	-0.000073
С	2.462980	-2.856985	-0.000022
Η	5.574083	-0.531079	-0.000064
Η	1.579687	-3.491047	-0.000004
0	-0.485724	1.076842	0.000113
Ν	-0.125529	-1.775000	0.000044
Ν	4.226553	1.730792	0.000008
Η	5.162148	1.338565	-0.000051
Ν	-5.233150	0.593907	0.000000
Η	-6.031540	-0.036676	-0.000026
С	4.141682	3.197701	0.000019
Η	3.579852	3.522978	0.889031
Η	3.579752	3.522987	-0.888926
С	5.544474	3.809202	-0.000054
Η	6.107034	3.509134	-0.893990
Η	5.469858	4.902428	-0.000044
Η	6.107132	3.509125	0.893817
С	-5.087912	-2.291047	-0.000004
Η	-5.715007	-2.120046	0.890112
Η	-5.714977	-2.120030	-0.890137
Η	-4.805441	-3.349108	-0.000009
С	-5.530693	2.028252	-0.000003
Η	-5.070369	2.491351	0.887821
Η	-5.070325	2.491356	-0.887801
С	-7.043395	2.260278	-0.000040
Η	-7.509655	1.825735	0.893780
Η	-7.250248	3.336305	-0.000046
Η	-7.509608	1.825735	-0.893885

(c) Figure S6: Oxazine 170 S₁ planar minimum \rightarrow S₀ emission spectrum – comparison of theoretical spectra at 0K and 338.7K with experiment. Parameters used in the spectra calculation: Keyword section is same as CV, ReadFCHT section has TD=(time=1.d-9,2NStep=24, 2NstepWin=18). The theoretical spectra are aligned to experimental 0-0 band maximum.

(d) Dihedral angle analyses:

Figure S7: Analysis of electronic energy and oscillator strength along the scan of dihedral angles involving torsional motion of NH-ethyl groups in oxazine 170. The barrier from a planar to a planar configuration to a twisted configuration (0.16 eV and 0.08 eV for α_1 and α_2 respectively) is more than the available thermal energy (0.029 eV corresponding to 338.7K) and hence, like CV, oxazine 170 cannot easily twist its amino groups. This accounts for the dominant fluorescence seen in experiments. The angle $\alpha_1(\alpha_2)$ corresponds to D(5,6,26,27) (D(13,12,28,29)).

The twisting of the amino groups in oxazine 170 brings S_1 to a near-degeneracy with S_0 . A natural transition orbital analysis revealed, similar to CV, a change in character from $\pi \rightarrow \pi^*$ to $n \rightarrow \pi^*$ (Figure S8).

Figure S8: Natural transition orbital (NTO) analysis of oxazine 170 corresponding to S_1 planar minimum (left) and a low energy twisted configuration (right) from Figure S7. The bottom (top) orbital corresponds to a hole (particle) NTO.

(e) T_1 optimized geometry using TD-TPSS/6-31G*

1 ob	timized Scor	neu y using i	D 1100/03
С	3.389319	-0.568532	-0.000012
С	2.245213	-1.434055	-0.000011
С	0.901746	-0.896063	-0.000003
С	0.772811	0.522904	0.000002
С	1.859155	1.388031	0.000002
С	3.177108	0.876371	-0.000005
С	-1.571276	0.271404	0.000007
С	-1.388339	-1.148487	0.000004
С	-2.562513	-1.947951	0.000007
Η	-2.421656	-3.026983	0.000006
С	-3.841260	-1.408004	0.000011
С	-3.975968	0.029766	0.000011
С	-2.821814	0.859214	0.000010
Η	1.671165	2.457850	0.000006
Η	-2.901637	1.942578	0.000012
С	4.671669	-1.161568	-0.000020
С	4.828750	-2.548145	-0.000027
Η	5.830618	-2.972849	-0.000033
С	3.702179	-3.392359	-0.000026
Η	3.830241	-4.472770	-0.000031
С	2.426797	-2.839626	-0.000018
Η	5.574142	-0.550958	-0.000021
Η	1.536636	-3.463224	-0.000016
0	-0.477134	1.113865	0.000007
Ν	-0.158340	-1.752628	-0.000001
Ν	4.236067	1.731119	-0.000005
Η	5.169812	1.331871	-0.000011
Ν	-5.226119	0.581182	0.000014
Н	-6.016719	-0.059134	0.000014
С	4.162528	3.200172	0.000001
Н	3.602900	3.527003	0.889031
Н	3.602897	3.527010	-0.889025
С	5.570092	3.800416	0.000001

	Н	6.130395	3.496720	-0.894025
	Н	5.502702	4.894042	0.000005
	Н	6.130398	3.496713	0.894023
	С	-5.063507	-2.297015	0.000013
	Н	-5.690386	-2.130658	0.890243
	Н	-5.690390	-2.130658	-0.890213
	Н	-4.769291	-3.351414	0.000013
	С	-5.543534	2.016015	0.000014
	Н	-5.086660	2.477374	0.888355
	Н	-5.086665	2.477374	-0.888329
	С	-7.058938	2.227518	0.000019
	Н	-7.520471	1.788032	0.893942
	Н	-7.279170	3.300822	0.000018
	Н	-7 520476	1 788030	-0.893901
(f)	$T_2 on$	timized geor	netry using T	D-TPSS/6-31G*
(-)	C	3 398495	-0 581385	-0.000014
	C	2.269833	-1 473133	-0.000011
	C	0.907979	-0.966180	-0.000004
	C	0.775794	0.437444	-0.000002
	C	1 850419	1 343855	-0.000004
	C	3 176014	0.855337	-0.000007
	C	-1 554971	0.182219	0.000004
	C	-1 379897	-1 215921	0.000004
	C	-2 579550	-1.973101	0.000004
	с ц	2.379330	3 057107	0.000009
	C	3 862818	1 407668	0.000010
	C	-3.002010	-1.407008	0.000013
	C	2 821262	0.013003	0.000011
	с u	-2.031203	0.012013	0.000000
	п u	1.034079	2.408303	-0.000002
	Г	-2.0/1040	1.090022	0.000003
	C	4.700933	-1.146113	-0.000024
		4.88//34	-2.522558	-0.000029
	н	5.890010	-2.929930	-0.000037
	C	3.772052	-3.392201	-0.000025
	H	3.925118	-4.469624	-0.000030
	C	2.486857	-2.8/2266	-0.000018
	H	5.586454	-0.513497	-0.000030
	H	1.613217	-3.519076	-0.000015
	0 N	-0.484235	1.02/936	0.000000
	N	-0.145284	-1.821392	-0.000002
	N	4.218401	1.736521	-0.000006
	H	5.159/98	1.35/18/	-0.000011
	N	-5.242483	0.606037	0.000012
	H	-6.050008	-0.009917	0.000013
	C	4.111057	3.201852	0.000001
	H	3.546061	3.520421	0.889371
	H	3.546068	3.520431	-0.889369
	C	5.505195	3.833330	0.000010
	H	6.071606	3.540891	-0.893871
	H	5.414686	4.925291	0.000015
	Н	6.071599	3.540881	0.893891
	С	-5.093160	-2.280883	0.000019
	Н	-5.718740	-2.095396	0.888591

п	5 719740	2 005206	0 000516
п	-3./10/49	-2.093390	-0.000340
Н	-4.823263	-3.341664	0.000018
C	-5.512626	2.048933	0.000012
H	-5.049906	2.504488	0.889399
Н	-5.049916	2.504486	-0.889382
C	-7.021959	2.303388	0.000020
Н	-7.494184	1.874821	0.893681
Н	-7.214420	3.382049	0.000019
Н	-7.494194	1.874818	-0.893635
(g) $T_3 op$	timized geor	netry using T	D-TPSS/6-31G*
С	3.392419	-0.560407	-0.013061
С	2.248784	-1.439514	0.012371
С	0.917653	-0.901283	0.010226
С	0.777955	0.500898	-0.012847
С	1.866052	1.382191	-0.008462
С	3.176553	0.883316	0.006743
С	-1.570538	0.241512	-0.005793
Ċ	-1.396985	-1.166366	0.019250
C	-2.555523	-1 963900	0.034365
н	-2 427747	-3 044566	0.053133
C II	-3 860321	-1 /06009	0.026165
C C	3 078630	0.016952	0.020105
C C	-3.978039	0.010952	0.015613
C II	-2.827899	0.855508	-0.013013
н	1.005/00	2.449241	0.004989
Н	-2.898994	1.919140	-0.036214
C	4.669853	-1.153523	-0.077034
C	4.834240	-2.547501	-0.0/4190
Н	5.838166	-2.964286	-0.122380
С	3.711830	-3.405070	-0.016723
Н	3.850941	-4.483770	-0.011113
C	2.441264	-2.862323	0.020069
Н	5.565394	-0.539320	-0.157166
Н	1.552296	-3.486316	0.048969
0	-0.474662	1.082518	-0.022348
Ν	-0.148576	-1.780964	0.027278
Ν	4.250462	1.735108	0.021570
Н	5.158074	1.346737	0.257432
Ν	-5.247513	0.583301	-0.007927
Н	-6.043151	-0.048818	-0.006913
С	4.154556	3.198384	0.064650
Н	3.625620	3.510350	0.980866
Н	3.553456	3.529350	-0.794361
С	5.550219	3.823877	0.010968
H	6.072827	3.542428	-0.911977
н	5 466770	4 916198	0.037554
Н	6 157509	3 514115	0.872657
C II	-5 073689	_2 303520	0.045261
ч	-5 702073	_2.303322	0.9312201
н	-5 704080	_2.122220	-0 846746
и П	_/ 775/01	-3 356766	0.040740
	5 532111	2 012022	0.000341
с u	5 056021	2.013723	0.055520
П	5.050021	2.400220	0.030/14
п	-3.003929	2.433773	-0.932123

С	-7.041559	2.268678	-0.031867
Н	-7.509503	1.859100	0.872833
Н	-7.232825	3.347286	-0.052664
Н	-7.519842	1.823327	-0.914075

(h) ISC rates for S_1 -> T_2 and S_1 - T_3 channels (Table S4) Table S4: ISC rates in OXA170 for triplet channels

State	ISC rate (s^{-1})		
	Н	D	
T ₂	6.4 x 10 ⁶	$6.4 \ge 10^6$	
T ₃	$1.6 \ge 10^5$	1.5×10^5	

4. Oxazine 4 data

(a) S₀ optimized geometry using TPSS/6-31G* (α_1 =180.0°, α_2 =180.0°)

С	-1.152772	-1.349631	-0.000004
С	-1.183191	0.086104	0.000001
С	-2.363438	0.803535	0.000004
С	-3.594677	0.095209	0.000001
С	1.179716	0.086074	0.000001
С	1.149266	-1.349729	-0.000004
С	2.405383	-2.031907	-0.000005
Н	2.374697	-3.119740	-0.000009
С	3.606542	-1.360012	-0.000003
С	3.591280	0.094817	0.000001
С	2.360143	0.803254	0.000004
Η	-2.333041	1.888978	0.000009
Н	2.329875	1.888711	0.000010
0	-0.001641	0.782543	0.000004
Ν	-0.001751	-2.050247	-0.000006
Ν	-4.773412	0.762268	0.000004
Η	-5.625865	0.208942	0.000004
Ν	4.770092	0.761694	0.000004
Η	5.622525	0.208342	0.000008
С	-3.610090	-1.359573	-0.000004
С	-2.408997	-2.031620	-0.000006
С	-4.939173	2.224441	0.000009
Η	-4.440386	2.638124	-0.889066
Η	-4.440392	2.638118	0.889090
С	-6.425333	2.588759	0.000005
Η	-6.928895	2.197486	0.893753
Η	-6.536844	3.678767	0.000009
Η	-6.928889	2.197493	-0.893750
С	4.936084	2.223916	0.000008
Η	4.437331	2.637616	-0.889066
Η	4.437352	2.637611	0.889097
С	6.422308	2.587896	-0.000010
Η	6.925762	2.196522	-0.893775
Η	6.534108	3.677878	-0.000006
Η	6.925785	2.196514	0.893739
С	-4.927482	-2.100373	-0.000006
Η	-5.529488	-1.859413	-0.890231
Η	-4.759549	-3.182146	-0.000011

Η	-5.529487	-1.859420	0.890220
С	4.923875	-2.100909	-0.000004
Н	5.525880	-1.859972	-0.890232
Н	5.525880	-1.859977	0.890225
Н	4.755877	-3.182672	-0.000007
Н	-2.378472	-3.119467	-0.000010

(b) S_1 optimized geometry using TD-TPSS/6-31G* (planar minimum). There were convergence issues in the solution of Kohn-Sham equations when trying to find the optimized geometry with the twisted configuration of the amino groups, so we are unable to report that data. The lack of convergence again, indicates the presence of multi-configuration character in the ground electronic state, the exploration of which is beyond the scope of the current analysis.

С	-1	.151965	-1.420062	0.000079
	С	-1.155758	-0.027601	0.000153
	С	-2.367592	0.739078	0.000161
	С	-3.624690	0.061116	0.000064
	С	1.184859	0.009917	0.000170
	С	1.157769	-1.437630	0.000174
	С	2.441259	-2.072916	0.000091
	Η	2.446278	-3.161067	0.000045
	С	3.631665	-1.366787	0.000077
	С	3.598024	0.085308	0.000112
	С	2.348188	0.756299	0.000148
	Η	-2.294570	1.823012	0.000205
	Η	2.286881	1.840976	0.000144
	0	-0.016701	0.703426	0.000192
	Ν	0.040930	-2.173826	0.000088
	Ν	-4.783231	0.790594	0.000014
	Η	-5.653516	0.264529	-0.000085
	Ν	4.768861	0.780348	0.000019
	Η	5.633523	0.247645	-0.000040
	С	-3.643949	-1.362987	-0.000044
	С	-2.422376	-2.048841	-0.000031
	С	-4.902130	2.254143	0.000064
	Η	-4.393885	2.659450	-0.889072
	Η	-4.394049	2.659379	0.889327
	С	-6.376810	2.663996	-0.000056
	Η	-6.891058	2.287472	0.893734
	Η	-6.454689	3.756910	-0.000019
	Η	-6.890893	2.287544	-0.893971
	С	4.895145	2.243127	-0.000026
	Η	4.385222	2.646208	-0.888761
	Η	4.385406	2.646250	0.888797
	С	6.370494	2.649516	-0.000192
	Η	6.884465	2.271694	-0.893841
	Η	6.452495	3.742177	-0.000225
	Η	6.884654	2.271735	0.893367
	С	-4.963065	-2.098543	-0.000159
	Η	-5.566420	-1.852940	-0.889639
	Η	-4.805427	-3.182024	-0.000237
	Η	-5.566498	-1.853083	0.889308
	С	4.957023	-2.088797	0.000004
	Н	5.555525	-1.834187	-0.889223

Η	5.555595	-1.834248	0.889203
Η	4.808289	-3.173162	-0.000026
Η	-2.426780	-3.138341	-0.000097

(c) Figure S9: Oxazine 4 S₁ planar minimum → S₀ emission spectrum – comparison of theoretical spectra at 0K and 338.8K with experiment. Parameters used in the spectra calculation: Keyword section is same as CV, ReadFCHT section has TD=(time=1.d-9,2NStep=24, 2NstepWin=18). The theoretical spectra are aligned to experimental 0-0 band maximum.

(d) Dihedral angle analyses:

Figure S10: Analysis of electronic energy and oscillator strength along the scan of dihedral angles involving torsional motion of NH-ethyl groups in oxazine 4. The barrier from a planar to a twisted configuration (0.08eV and 0.50 eV for α_1 and α_2 respectively) is more than the available thermal energy (0.029 eV corresponding to 338.7K) and hence, like CV and oxazine 170, oxazine 4 cannot easily twist upon electronic excitation. The angle $\alpha_1(\alpha_2)$ corresponds to D(3,4,16,17) (D(11,10,18,19)).

The twisting of the amino groups in oxazine 4 brings S_1 to a near-degeneracy with S_0 like oxazine 170. A natural transition orbital analysis revealed, similar to CV and oxazine 170, a change in character from $\pi \rightarrow \pi^*$ to $n \rightarrow \pi^*$ (Figure S11).

Figure S11: Natural transition orbital (NTO) analysis of oxazine 4 corresponding to S_1 planar minimum (left) and a low energy twisted configuration (right) from Figure S10. The bottom (top) orbital corresponds to a hole (particle) NTO.

(e) T	1 0	ptim	nized	l g	geometry	using	TD	-TF	PSS	/6-	-31	G*
(0			pun	IIL CC	• >-	seometry	ability	10		20	~	~ 1	<u> </u>

Ċ	-1.153171	-1.366972	-0.000023
С	-1.179919	0.066988	-0.000051
С	-2.359274	0.787684	-0.000049
С	-3.596362	0.089057	-0.000015
С	1.176380	0.066693	-0.000058
С	1.149600	-1.366950	-0.000034
С	2.405916	-2.032988	-0.000022
Н	2.382087	-3.120839	-0.000013
С	3.617242	-1.356501	-0.000013
С	3.592882	0.088649	-0.000023
С	2.355851	0.787356	-0.000053
Н	-2.320741	1.873342	-0.000070
Н	2.316942	1.872991	-0.000065
0	-0.001682	0.786724	-0.000078
Ν	-0.001777	-2.106505	-0.000025
Ν	-4.779291	0.773254	-0.000004
Н	-5.634686	0.222061	0.000020
Ν	4.775872	0.772659	-0.000004
Н	5.631247	0.221381	0.000017
С	-3.620913	-1.356024	0.000009
С	-2.409495	-2.032687	0.000003
С	-4.939534	2.234126	-0.000006
Η	-4.434562	2.642263	-0.888344
Η	-4.434512	2.642269	0.888300
С	-6.422946	2.609073	0.000035
Η	-6.929589	2.222702	0.894031
Η	-6.524704	3.699977	0.000036
Н	-6.929640	2.222699	-0.893931
С	4.936533	2.233560	0.000011
Η	4.431699	2.641864	-0.888313
Н	4.431661	2.641848	0.888321
С	6.420059	2.608005	0.000047
Н	6.926558	2.221445	-0.893941
Η	6.522210	3.698876	0.000062

	Н	6.926519	2.221424	0.894049
	С	-4.932985	-2.105956	0.000034
	Н	-5.537810	-1.872308	-0.890306
	Н	-4.755307	-3.186046	0.000040
	Н	-5.537784	-1.872295	0.890389
	С	4.929491	-2.106259	0.000001
	Н	5.534180	-1.872449	-0.890365
	Н	5.534159	-1.872453	0.890384
	Н	4.752000	-3.186386	-0.000003
	Н	-2.385906	-3 120549	0.000018
(f)	T ₂ on	timized geor	netry using T	D-TPSS/6-31G*
(1)		-1 150584	-1 446756	0 000044
	C	-1 172915	-0.030336	0.000091
	C	-1.172915	0.722624	0.000091
	C	-2.337210	0.752024	0.000097
	C	-3.013322	0.008577	0.000044
	C	1.109/30	-0.030522	0.000084
	C	1.14/262	-1.446831	0.000042
	C	2.425256	-2.068972	0.000000
	H	2.439600	-3.15/634	-0.000034
	С	3.633257	-1.364403	-0.000009
	С	3.610197	0.068310	0.000033
	С	2.354122	0.732376	0.000087
	Н	-2.281786	1.816742	0.000134
	Н	2.278582	1.816496	0.000124
	0	-0.001595	0.691596	0.000121
	Ν	-0.001821	-2.188272	0.000027
	Ν	-4.776896	0.789796	0.000029
	Н	-5.647557	0.266461	0.000001
	Ν	4.773847	0.789197	0.000016
	Н	5.644403	0.265756	-0.000017
	С	-3.636768	-1.364037	0.000011
	С	-2.428891	-2.068559	0.000015
	С	-4.888227	2.254490	0.000012
	н	-4 378136	2 655528	-0.889422
	Н	-4 378255	2.655544	0.889507
	C	-6 360764	2 671904	-0.000092
	н	-6 877112	2 297625	0.893550
	н	-6 434292	3 765132	-0.000105
	н	-6 876990	2 297610	-0.893798
	C	4 885056	2.257848	0.000020
	н	4 374944	2.255010	-0 889404
	н	4 375046	2.654902	0.889507
	C II	6 357545	2.054702	0.000064
	н	6 873839	2.071492	-0.893765
	н	6 / 30 9 3 6	3 764724	0.000064
	и П	6 972045	2 207258	-0.000004
	п С	1 050022	2.271230 2.001002	0.093373
		-4.737033	-2.071770	-0.000023
	H TT	-3.3390/4	-1.030123	-0.00040
	H	-4.809489	-3.1/0311	-0.000040
	H	-5.559100	-1.858155	0.000057
	U T	4.955529	-2.092623	-0.000057
	H	5.555480	-1.838808	-0.888989
	Н	5.555517	-1.838853	0.888863

	Η	4.805662	-3.176908	-0.000081
	Η	-2.443041	-3.157256	-0.000014
(g)	T ₃ opt	timized geor	netry using T	D-TPSS/6-31G*
	С	-1.166369	-1.387108	0.000077
	С	-1.182309	0.034689	0.000113
	С	-2.365829	0.764164	0.000113
	С	-3.600317	0.077726	0.000068
	С	1.179013	0.034692	0.000109
	С	1.162856	-1.387333	0.000063
	С	2.404937	-2.051213	-0.000002
	Η	2.395696	-3.139431	-0.000057
	С	3.637894	-1.352814	-0.000003
	С	3.597053	0.077299	0.000059
	С	2.362563	0.763851	0.000114
	Η	-2.317056	1.849145	0.000120
	Η	2.313931	1.848845	0.000140
	0	-0.001620	0.749505	0.000126
	Ν	-0.001758	-2.141876	0.000043
	Ν	-4.796783	0.778739	0.000009
	Η	-5.657023	0.237296	-0.000034
	Ν	4.793629	0.778241	0.000011
	Н	5.653834	0.236773	-0.000045
	С	-3.641277	-1.352579	0.000042
	C	-2.408650	-2.050782	0.000046
	C	-4.925982	2.233325	-0.000012
	H	-4.406961	2.635322	-0.886122
	H	-4.407059	2.635342	0.886146
	C II	-6.398112	2.649192	-0.000102
	H	-0.914/91	2.275597	0.893597
	H	-0.4/1298	3.742364	-0.000121
	п	-0.914090	2.275575	-0.893849
	с u	4.922790	2.232751	0.000032
	и П	4.403001	2.034877	-0.880055
	C II	4.403920 6 30/0/15	2.034843	0.000066
	н	6 911507	2.048033	-0.893827
	н	6.468198	3 741797	-0.000050
	Н	6 911634	2 274974	0.893609
	C	-4.947274	-2.108804	-0.000019
	H	-5.554638	-1.876264	-0.889341
	Н	-4.768130	-3.188816	-0.000056
	Н	-5.554678	-1.876334	0.889294
	С	4.943559	-2.109524	-0.000083
	Н	5.551120	-1.877146	-0.889339
	Н	5.551180	-1.877231	0.889155
	Н	4.764059	-3.189461	-0.000127
	Η	-2.399024	-3.139041	0.000009
	~ -			

(h) ISC rates for S_1 -> T_2 and S_1 - T_3 channels (Table S5) Table S5: ISC rates in OXA170 for triplet channels

State	ISC rate (s ⁻¹)		
	Н	D	
T_2	$1.7 \ge 10^5$	1.9 x 10 ⁵	
T ₃	2.5×10^6	2.5×10^6	

5. Darrow red data

(a)	S ₀ op	timized geor	netry using E	$33LYP/6-31G^* (\alpha_1 = 180.0^\circ, \alpha_2 = 180.0^\circ)$
	С	3.785894	0.516530	-0.000649
	С	2.912874	-0.606546	-0.002183
	С	1.469387	-0.408049	0.001219
	С	0.981960	0.944802	0.006059
	С	1.815291	2.041294	0.007617
	С	3.212172	1.858939	0.004378
	С	-1.218321	0.109501	0.007903
	С	-0.688232	-1.208285	0.003125
	С	-1.618787	-2.279739	0.001888
	Н	-1.232823	-3.293494	-0.001732
	С	-2.965139	-2.027137	0.005194
	С	-3.479395	-0.689674	0.009950
	С	-2.573216	0.387484	0.011298
	Η	1.385993	3.037709	0.011334
	Η	-3.668563	-2.854693	0.004188
	Η	-2.887494	1.419722	0.014888
	С	5.178112	0.292145	-0.004064
	С	5.690988	-0.995157	-0.008810
	Н	6.765629	-1.146666	-0.011383
	С	4.823437	-2.097792	-0.010279
	Η	5.227587	-3.105301	-0.013996
	С	3.450812	-1.904766	-0.007004
	Η	5.880185	1.120135	-0.003075
	Н	2.769083	-2.747431	-0.008101
	0	-0.351129	1.163735	0.009265
	Ν	0.643168	-1.440034	-0.000125
	Ν	4.003356	2.943021	0.005980
	Η	5.009782	2.881183	0.003875
	Η	3.607257	3.872844	0.009443
	Ν	-4.850148	-0.571569	0.012890
	Η	-5.360674	-1.450364	0.011679
	С	-5.787605	0.494219	0.017229
	0	-6.958656	0.180326	0.018792
	С	-5.315497	1.927066	0.019625
	Н	-4.717439	2.150502	0.909828
	Н	-4.720068	2.154378	-0.871354
	Η	-6.203345	2.559968	0.022347

(b) S_1 optimized geometry using TD-B3LYP/6-31G* (planar minimum)

С	3.778451	0.536243	-0.000853
С	2.902631	-0.587978	0.001994
С	1.467309	-0.414148	-0.002636
С	0.981808	0.937447	-0.010299
С	1.816207	2.039725	-0.013080
С	3.211713	1.880077	-0.008822
С	-1.202144	0.091414	-0.009968
С	-0.681203	-1.221210	-0.003525
С	-1.620230	-2.284894	-0.002129

Н	-1.232615	-3.298426	0.002583
С	-2.975327	-2.044423	-0.005662
С	-3.481407	-0.713624	-0.010182
С	-2.564181	0.365440	-0.014317
Η	1.374440	3.031318	-0.018919
Н	-3.673649	-2.876136	-0.002971
Η	-2.876148	1.398610	-0.025074
С	5.164564	0.293189	0.004298
С	5.678200	-1.007147	0.011867
Н	6.753601	-1.154477	0.015658
С	4.814970	-2.106364	0.014526
Н	5.212957	-3.115960	0.020360
С	3.440705	-1.898508	0.009604
Н	5.874480	1.114503	0.002650
Η	2.746000	-2.730600	0.011391
0	-0.364153	1.174111	-0.014622
Ν	0.669124	-1.487255	0.000499
Ν	4.005814	2.974839	-0.012177
Η	5.011691	2.921059	-0.010586
Η	3.603588	3.901198	-0.018082
Ν	-4.853380	-0.569935	-0.016222
Η	-5.376626	-1.442708	-0.039063
С	-5.776447	0.507192	0.013882
0	-6.951510	0.199095	-0.005906
С	-5.293866	1.934036	0.070886
Η	-4.674494	2.114805	0.956036
Η	-4.717413	2.196506	-0.823175
Η	-6.177023	2.571793	0.119275

(c) S_1 optimized geometry using TD-B3LYP/6-31G* (twisted minimum)

-	-	• •	
С	3.619860	-0.384158	-1.646705
С	2.836995	-1.052362	-0.660605
С	1.385755	-0.924874	-0.647356
С	0.805752	-0.107145	-1.672832
С	1.550894	0.539879	-2.635816
С	2.950516	0.414751	-2.657366
С	-1.311209	-0.561992	-0.763050
С	-0.703574	-1.349326	0.230050
С	-1.535353	-1.949549	1.189006
Н	-1.068461	-2.556067	1.957381
С	-2.917177	-1.767336	1.159446
С	-3.466916	-0.933400	0.190304
С	-2.689818	-0.348247	-0.802310
Η	1.038987	1.134187	-3.386023
Н	-3.551647	-2.261294	1.888036
Н	-3.116941	0.270831	-1.583826
С	5.024202	-0.524355	-1.600702
С	5.633100	-1.302160	-0.630417
Η	6.714655	-1.393870	-0.614847
С	4.855155	-1.966430	0.331838
Н	5.335196	-2.576839	1.090425
С	3.476570	-1.838630	0.316153
Η	5.657614	-0.012614	-2.318868

Н	2.858889	-2.337929	1.053649
0	-0.554613	0.048782	-1.728229
Ν	0.669677	-1.537933	0.286268
Ν	3.656323	1.057817	-3.619455
Η	3.175527	1.551125	-4.357140
Η	4.639107	0.888461	-3.761345
Ν	-4.923661	-0.802089	0.097198
Η	-5.429083	-1.487745	-0.469027
С	-5.658803	0.062818	0.725065
0	-6.930403	0.024559	0.614552
С	-5.137426	1.166521	1.625140
Η	-4.755214	0.723339	2.546894
Η	-4.335140	1.704692	1.122029
Η	-5.953771	1.848614	1.864087

(d) Figure S12: Darrow red S_1 planar minimum $\rightarrow S_0$ emission spectrum – comparison of theoretical spectra at 0K and 362.0 K with experiment. Parameters used in the spectra calculation: Keyword section is same as CV, ReadFCHT section has TD=(time=1.d-9,2NStep=24, 2NstepWin=18). The theoretical spectra are aligned to experimental 0-0 band maximum.

Figure S13: Analysis of electronic energy and oscillator strength along the scan of dihedral angles involving torsional motion of NH-ethyl and NH₂ groups in darrow red. The results are similar to CV and oxazine 170, in the sense that the molecule cannot easily twist from a planar to a twisted configuration along α due to a larger barrier (0.20eV) due to insufficient energy (0.03eV). The twisting along α_2 is possible however, since there is no barrier. Despite this, the radiative pathway dominates, indicating that simultaneous twisting of the groups is required to compete with fluorescence. The angle al (a2) corresponds to D(5,6,27,28) (D(13,12,30,31)).

(e)

Additionally, a natural transition orbital analysis (Figure S14) shows a change in character (and oscillator strength) from being radiative to non-radiative. Because of this, non-radiative pathways are likely important for the S_1 decay in Darrow red, similar to CV and oxazine 170.

Figure S14: Natural transition orbitals for two S₁ minima of darrow red: (left) planar bright, $\pi \rightarrow \pi^*$ excitation; (right) twisted dark, $n \rightarrow \pi^*$ excitation. The bottom (top) orbital corresponds to a hole (particle) NTO.

(f) T1 optimized geometry using TD-B3LYP/6-31G*

_	_		
С	3.719969	-0.582504	-1.804547
С	2.901527	-0.908913	-0.676851
С	1.488795	-0.657160	-0.693253
С	0.934281	-0.074553	-1.864250

	С	1.697569	0.251179	-2.967183
	С	3.089266	0.011207	-2.970670
	С	-1.183701	-0.127727	-0.853495
	С	-0.579408	-0.715239	0.308691
	С	-1.456510	-1.013997	1.392796
	Н	-1.013757	-1.458607	2.277493
	C	-2.805537	-0 756377	1 334813
	C	-3 378672	-0 172358	0 168724
	C	-2 525329	0.136039	-0.929312
	н	1 211511	0.69/188	-3 830912
	ц	3 420347	1.00/538	2 186507
	и П	-3.420347	-1.004558	2.180507
	п	-2.927240	0.361600	-1.034109
	C	5.096799	-0.8510//	-1./51514
	C	5.659156	-1.422659	-0.591569
	H	6.726349	-1.619023	-0.564502
	C	4.856377	-1.741481	0.511451
	Н	5.299966	-2.185992	1.396555
	С	3.493747	-1.487835	0.469805
	Н	5.757292	-0.621289	-2.562181
	Н	2.850366	-1.724616	1.308673
	0	-0.405836	0.189850	-1.941498
	Ν	0.735221	-0.984085	0.407939
	Ν	3.801401	0.343312	-4.067972
	Н	3.349810	0.756021	-4.872801
	Н	4.797609	0.198163	-4.134225
	Ν	-4.711647	0.126736	0.003597
	Н	-4.956554	0.539098	-0.893349
	С	-5.897945	0.014261	0.779024
	0	-6.915135	0.409191	0.247730
	Č	-5 856837	-0 563792	2.169987
	н	-5 500016	-1 599291	2.163009
	н	-5 211692	0.025687	2.830180
	н	-6 875276	-0 5/2998	2.558882
(α)	T2 on	-0.875270	-0.342998	2.330002
(g)	12 op		0.547(22)	ID-D3L IP/0-31G* 0.010000
	C	3.703333	0.347022	-0.019900
	C	2.890454	-0.599147	0.03/098
	C	1.454507	-0.449282	-0.044701
	C	0.979408	0.872829	-0.181534
	C	1.808881	2.006865	-0.250092
	C	3.204355	1.868/36	-0.178791
	С	-1.207983	0.051222	-0.200303
	С	-0.692510	-1.256330	-0.071030
	С	-1.657348	-2.284752	-0.033838
	Н	-1.305441	-3.306538	0.063566
	С	-3.028166	-2.015517	-0.101705
	С	-3.522671	-0.703231	-0.215015
	С	-2.576757	0.348299	-0.289703
	Н	1.347565	2.983124	-0.362484
	Н	-3.730281	-2.843086	-0.058704
	Н	-2.868718	1.378271	-0.444578
	С	5.161414	0.333660	0.083657
	С	5.677432	-0.937440	0.225721
	Н	6.750657	-1.078841	0.305097

	С	4.812938	-2.060718	0.271574
	Н	5.231395	-3.056213	0.381895
	С	3.448636	-1.889760	0.181254
	Н	5.852597	1.169869	0.064120
	Н	2.770516	-2.734053	0.219568
	0	-0.360879	1.117694	-0.263460
	Ν	0.643624	-1.519111	0.009880
	Ν	3.981564	2.980304	-0.243336
	Н	4.985797	2.929496	-0.307423
	Н	3.568311	3.885923	-0.411545
	Ν	-4.891944	-0.498980	-0.328103
	Н	-5.439584	-1.313805	-0.590345
	C	-5.752290	0.567284	0.007769
	0	-6.940291	0.405493	-0.182660
	Č	-5 178262	1 835588	0 597658
	н	-4 389524	1 642321	1 331376
	н	-4 776844	2 482512	-0 191727
	н	-5 999517	2.368503	1 078684
(h)	T3 on	timized geor	metry using [TD-B3L YP/6-31G*
(11)	C	3 716652	-0.542344	-1 776011
	C	2 909739	-0.956444	-0.655719
	C	1 476775	-0.748866	-0 646594
	C	0.038212	0.123704	1 701158
	C	1 600005	0.284682	2 900/71
	C	3 080763	0.284082	2.900471
	C	1 184403	0.082095	0.830277
	C	-1.184403	-0.200382	-0.830277
	C	-0.008912	1 248044	0.297022
	с u	-1.317229	-1.240944	1.311403
	п С	-1.119140	-1.750880	2.10/300
	C	-2.094993	-1.000394	0.004501
	C	-5.445452	-0.301308	0.094391
		-2.556283	0.006631	-0.948411
	п	1.190933	0.754096	-3./3/101
	H	-3.5311/4	-1.34/490	2.019117
	H	-2.915132	0.503864	-1.844805
	C	5.114561	-0.765513	-1./1/655
	C	5.693336	-1.368826	-0.621164
	H	6.766509	-1.529342	-0.596483
	C	4.893554	-1.778221	0.4/39//
	H	5.359368	-2.252968	1.331893
	C	3.530099	-1.572862	0.453059
	H	5.758901	-0.458762	-2.535188
	Н	2.901907	-1.876085	1.282319
	0	-0.404394	0.121062	-1.876749
	Ν	0.728751	-1.135361	0.399587
	Ν	3.799021	0.489091	-3.999976
	Н	3.334627	0.895618	-4.798786
	Η	4.786783	0.314815	-4.094528
	Ν	-4.788278	-0.070186	-0.102704
	Η	-5.058615	0.169642	-1.052057
	С	-5.913941	0.043546	0.744553
	0	-6.973086	0.307579	0.212742
	С	-5.754660	-0.133881	2.235220

- Н -5.672343 -1.196208 2.493540
- Н -4.878194 0.390749 2.627573
- Н -6.656416 0.259695 2.705836
- (i) ISC rates for $S_1 \rightarrow T_2$ and $S_1 \rightarrow T_3$ channels (Table S6)

Table S6: ISC rates in DR for triplet channels
--

State	ISC rate (s ⁻¹)			
	Н	D		
T ₂	5.1 x 10 ⁵	4.9 x 10 ⁵		
T ₃	3.6 x 10 ⁴	3.6 x 10 ⁴		

6. Analysis of permanent dipole moments of S₀ and S₁ states:

All dyes show change in character with large changes in permanent dipole moments (Table S7). The natural transition orbitals at twisted configurations were seen to be of $n \rightarrow \pi^*$ type, and also denote intramolecular charge-transfer type of transition.

Table S7: (Comparison	of permanent	dipoles of	^f ground and	excited states
-------------	------------	--------------	------------	-------------------------	----------------

Cresyl Violet							
Geom	Osc.Str.	S0dip S1dip (D) (D)		Nature			
S _o min	0.4458	4.3	3.5	π → π*			
S1 min (planar)	0.9184	4.1	5.0	$\pi {\boldsymbol{\rightarrow}} \pi^*$			
S1 min (twisted)	0.0000	20.6	13.1	Charge- transfer, n-π*			

Geom

S_omin S1 min (planar S1 (twiste

oxa170						
	Osc.Str.	S0dip (D)	S1dip (D)	Nature		
	0.6114	3.2	3.0	$\pi \rightarrow \pi^*$		
)	0.4029	3.1	3.6	π → π*		
d)	0.0935	5.0	12.5	Charge- transfer, n-π*		

Oxazille 4							
Geom	Osc.Str.	S0dip (D)	S1dip (D)	Nature			
S _o min	0.7299	2.5	3.4	$\pi \rightarrow \pi^*$			
S1 min (planar)	0.1651	2.8	3.7	π → π*			
S1 (twisted)	0.0000	5.5	10.1	Charge- transfer, n-π*			

ovozino 4

Darrow red							
Geom	Osc.Str.	S0dip (D)	S1dip (D)	Nature			
S _o min	0.7209	7.9	6.8	$\pi \rightarrow \pi^*$			
S1 min (planar)	0.6246	8.0	6.9	$\pi \rightarrow \pi^*$			
S1 min (twisted)	0.0132	14.7	7.4	Charge- transfer, n-π*			

7. Calculations of non-radiative intersystem crossing and internal conversion rates

The non-radiative intersystem crossing (ISC) rates are calculated using pure spin Born-Oppenheimer (BO) states S_1 and T_n from the Gaussian program. They can be treated as diabatic states because to within first order, they are only coupled through the spin-orbit coupling (SOC) potential operator². We will also make the Condon approximation that the SOC is independent of nuclear motion and assume that the initial and final state vibrational populations are at equilibrium. Within this framework, the S_1 population decay can derived as^{3,4}

$$P_1(t) = \exp[-2Re\{V_{SOC}^2 \int_0^t dt'(t-t')\chi(t-t')\}]$$

where the time correlation function $\chi(t - t')$ contains vibrational overlaps between the two electronic states and V_{SOC} is the spin orbit coupling evaluated at the donor (S₁) minimum. The exponent is recast in the form of a product $g(t)=k_{ISC}t$, and a linear fit to the equation $P_1(t) \approx 1 - k_{ISC}t$ gives the slope as the estimate of the ISC rate constant.

For obtaining rates of internal conversion (IC) between S_1 and S_0 , the same expression for the population dynamics as in the ISC case was employed with substitution of $|V_{SOC}|^2$ to the absolute square of the nonadiabatic vector $|V_{NAC}|^2$

 $=\sum_i |\langle S_1 | \nabla_i | S_0 \rangle|^2 / M_i^2$, where $|S_1\rangle$, $|S_0\rangle$ are BO states, $\nabla_i = \partial/\partial Q_i$ is the derivative with respect to normal mode coordinate Q_i and M_i is the effective mass of normal mode Q_i . This substitution introduces another approximation for the matrix elements of nuclear states

$$\langle \chi_n | \nabla_i | \chi'_m \rangle \approx \langle \chi_n | \chi'_m \rangle,$$

where χ_n, χ'_m are vibrational wavefunctions of harmonic approximations of S₁ and S₀ surfaces respectively. The approximation involving the nuclear derivative of the vibrational functions can be justified by large density of states of S₀ vibrational states at the height of the S₁ minimum, which makes individual differences between nuclear integrals less significant.

Table S8: Properties for the S₁ bright minimum: 1) absolute magnitude of the nonadiabatic coupling with the S₀ state (cm⁻¹), 2) adiabatic electronic gaps (eV) and spin orbit couplings (cm⁻¹) for the T₁₋₃ states.

Dye	V _{NAC}		T ₁		T ₂		T ₃	
	Н	D	Gap	V _{SOC}	Gap	V _{SOC}	Gap	V _{SOC}
CV	9.5751	8.6084	0.98	0.0431	0.25	0.1677	-0.09	0.0592
DR	11.8004	11.2984	1.14	0.0538	0.29	0.2807	0.92	0.1580
OX4	8.7114	8.2402	1.09	0.0713	0.45	0.0774	0.11	0.0971
OX170	10.5530	10.0470	1.00	0.0134	0.23	0.1518	-0.08	0.1412

- 1. Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. Theory of excited state decays and optical spectra: Application to polyatomic molecules. *J. Phys. Chem. A* **2010**, 114, 7817–7831.
- 2. Peng, Q.; Niu, Y.; Shi, Q. Correlation function formalism for triplet state decay: combined spin-orbit and nonadiabatic couplings. *J. Chem. Theory Comput.* **2013**, 9, 1132-1143.
- 3. Endicott, J. S.; Joubert-Doriol, L.; Izmaylov, A. I. A perturbative formalism for electronic transitions through conical intersections in a fully quadratic vibronic model. *J. Chem. Phys.* **2014**, 141, 034104.

 Izmaylov, A. I.; Mendive-Tapia, D.; Bearpark, M. J.; Robb, M. A.; Tully, J. C.; Frisch, M. J. Nonequilibrium Fermi golden rule for electronic transitions through conical intersections. *J. Chem. Phys.* 2011, 135, 234106.