Electronic Supporting Information:

Single crystal spectroscopic measurement details

Spectroscopic measurements on single crystals were performed on a self-built instrument, composed of a halogen light source, a rotating sample stage and a conventional microscope coupled to a spectrometer. A linear polarizer could be inserted between the light source and the condenser lens focusing light on the sample. Using the optical microscope equipped with a 60x objective, individual crystals were selected and illuminated with a focused light beam. The transmitted signal was collected through a slit at the entrance of the spectrometer, in the form of a spatially resolved transmission map: the slit is decomposed in 255 lines along its largest dimension, a spectrum being measured for each of these lines

Figure S1: Sketch of the micro-spectrometer

The directly transmitted signal was converted to absorption using the following relation:

$$Abs = -\log\left(\frac{I_{sample}}{I_0}\right) + \log\left(\frac{I_{substrate}}{I_0}\right)$$

where I_{sample} and $I_{substrate}$ are the transmitted intensity of the sample and the substrate, respectively. I₀ is the intensity of the illumination beam (with or without polarizing filter depending on the experiment) measured in the same conditions as the sample.

An example of the raw data is presented in Figure S2. The spatially resolved absorbance spectra of the same crystal are given for c- and b-polarization. The images correspond to the position of the crystal between the slit, as seen by the spectrometer. To achieve good spectral resolution, the slit opening was set to 3 nm.

Figure S2: Spatially resolved absorption spectra of a (a) b-polarized and (c) c-polarized CyC crystal. The area between the red lines was used to average the absorption spectra of each polarization. The resulting mean absorbance spectra visible in (b) and (d) for b-polarization and c-polarization, respectively.

As visible from Figure S2, the spatially resolved spectra present some artefacts, mostly at the edges of the crystals where diffraction occurs, resulting in absorbance extending to the infrared. In order to get representative spectra of the crystal absorbance, spectra were averaged over 15-20 lines in the center of the crystal where absorbance is homogenous.

BFDH morphology prediction

Figure S3: Crystal equilibrium morphology using the BFDH model implemented in the Mercury 3.8 software.(a) View along the [100] direction (b) view along the [001] direction. While the BFDH morphology gives the equilibrium form of the crystal, the final growth form depends on growth conditions. In the present case, growth conditions give rise to crystals composed mainly of {100},{011} and {0-11} faces.

Conoscopy analysis

Optical microscopy was performed on a polarizing microscope equipped with a universal stage (Leitz-Orthoplan-Pol with Leitz universal stage). Due to the high absorbance of all crystals, thick specimens appear dark red, and all colour effects related to birefringence disappear. We therefore selected a sample with thin crystal, yet having lateral sizes of several micrometers. Spacers were placed in the corners of the sample (to protect the fragile crystals from being crunched) and immersion oil was placed on it before it was clamped between the two glass hemispheres of the universal stage.

The crystals extinguish symmetrically, with the diagonals parallel to polarizer and analyzer. They expose a complete isogyre cross in conoscopic view, two adjacent quadrants are tainted blue, the other two are red, see Figure S4. The isogyre perpendicular to the long rhomb diagonal serves as a mirror plane (m) in the field of view. From these observations one can conclude that a) the crystals are monoclinic, b) the crystallographic b-axis is in the substrate plane and parallel to the long rhomb diagonal, c) the crystals have a (h0l) out-of-plane orientation, d) the crystals show horizontal dispersion (i.e. b-axis || X- or Z-axis of indicatrix). It proved impossible to bring an optic axis into the field of view by tilting the sample. Therefore, the acute bisectrix (AB) must be in the substrate plane and the angle between the two optical axes (2V) must be less than 60°.^[1]

Figure S4. Conoscopic view of the crystal, schematic top view of the crystal (lower) and schematic side view of the crystal (upper) corresponding to the microscope image. The dotted line indicates the microscope axis. The rhomb shaped crystal shows horizontal dispersion.

Atomic displacements in CyC platelet crystals

In total 6 parameters per atom were refined using the SHELXL program^[2] to obtain the anisotropic displacements *U* which include thermal motion as well as disorder (see ellipsoid representation in Figure S5). The six eigenvalues of *U* are represented in the isotropic displacement parameter *Ueq* as the mean-square displacement $\langle u^2 \rangle$ averaged over all directions ($Ueq = \langle u^2 \rangle$). All *U* values are small (see figure below). Additionally, it was possible to solve the positional disorder which is related to one of the two perchlorate anions in the asymmetric unit. As seen in Figure S5, there is rotational disorder around the Cl2-O5 bond resulting in an atom position splitting for O6, O7 and O8.

Figure S5. Ellipsoid representation (50% probability) of the anisotropic displacement parameters of the atoms in the molecules composing the asymmetric unit of the crystal structure. The atoms are labeled in the Figure, which was prepared using PLATON.^[3]

Franck-Condon analysis

The observed spectrum of CyC in chloroform solution (Fig. 4a) is fitted to a three-mode Franck-Condon model and the results shown in Figure S6. The 0-1 primary shoulder at 15500 cm⁻¹ is not represented in the fit as sharply as it is observed, but all other spectral features, including the long tail extending up to 23000 cm⁻¹, are well reproduced. While the addition of a fourth mode could allow the shoulder to sharpen, it is questionable as to whether or not the data supports unique optimization of the two additional parameters required. Here, only the simplest realistic fit to the data is presented.

Figure S6. Fit of the observed spectrum of CyC in chloroform to a 3-model Franck-Condon model (see Table 1) blue points- observed spectrum, red line- fit.

PL Measurements

Figure S7:(a) Compared emission of CyC solution, thin film and single crystal. (b) Excitation scan of a collection of single crystals grown on a substrate for emission at 16 667 cm⁻¹ and 15 385 cm⁻¹

Reflection

The reflection resulting from a CyC amorphous thin film of about 50 nm was evaluated by comparing the absorbance of the film as measured in a UV-vis spectrometer to that measured in an integrating sphere. While the UV-vis measurement gives the transmission of the film (T=1-A-R), the integrating sphere measurement give the "true" absorption of the film.^[4] The two spectra are compared in Figure S8 below. At the main resonances, a difference of 28-38% is found and attributed to reflection from the film surface.

Polarized transmission spectra of CyC platelet crystals

Transmission microscopy of rhombic CyC crystal platelets did not show identical spectral shapes. As mentioned in the main text, reflectance and interference severely affect the transmission signal and depend strongly on crystal thickness. Figure S9 shows the angular dependence of polarized transmission spectra of a 50-60 nm thick crystal. In this thinner crystal, the peak observed at about 19 000 cm⁻¹ is not as prominent as in Figure 4 of the main text. However, the angular dependence can be rationalized as a combination of two components. Defining spectrum S_0 as the one obtained with polarization parallel to c ($\theta = 0^{\circ}$) and S_{90} as the spectrum obtained with $\theta = 90^{\circ}$ polarization (parallel to b) the spectra S_{θ} at varying angle θ reasonably follow the relationship $S_{\theta} = S_0 \cos^2 \theta + S_{90} \sin^2 \theta$. For larger crystals this cannot clearly be observed, which could be due to thickness inhomogeneity.

Figure S9: (a) Transmission spectra of CyC single crystals under linearly polarized light, the absorbance of the crystal varies as a function of the crystal orientation (b) Relative position of the crystal and light polarization direction (double arrows) at all angles presented in (a).

Exciton coupling energy

To get an estimation of the exciton coupling strength in the layered crystal structure, the exciton coupling energy J_D of selected chromophore pairs was calculated according to the extended dipole model.^[5]

$$J_D = \frac{1}{4\pi\varepsilon\varepsilon_0} \left(\frac{\mu}{L}\right)^2 \left(R_1^{-1} + R_2^{-1} - R_3^{-1} - R_4^{-1}\right)$$

where μ is the transition dipole moment, R_i (i=1...4) are the distances between the charges of the dipoles in a pair of molecules, and $\varepsilon_0 = 8.85 \cdot 10^{-12}$ Fm⁻¹ is the vacuum permittivity and $\varepsilon = 4$ was taken for the relative permittivity of the dye according to similar trimethine dyes.^[6,7] *L* is the dipole length taken to be 9.5 Å in agreement with previous works ^[8-10] on different trimethine cyanine dyes.

The transition dipole moment was obtained from the absorption spectrum in chloroform solution according to

$$|\mu|^2 = \frac{f}{4.702 \cdot 10^{-7} \bar{\nu}_{max}}$$

where μ is the transition dipole moment in Debye, $\bar{\nu}_{max}$ is the maximum absorption wavenumber, f is the oscillator strength measured in chloroform solution, $4.702 \cdot 10^{-7}$ D⁻² cm is a collection of physical constants. This yielded a transition dipole moment of $\mu = 10.9$ D.

The strongest exciton coupling energies of neighboring molecules within layers 1, as well as the interlayer couplings between layers 1 - 2 and 1a - 1b are given in Table S1 below:

Table S1: Intralayer and interlayer exciton coupling energies J_D in the layered crystal structure of cyanine dye CyC. Layers 1a, 1b and 2 follow the notation given in Figure 2a. The various exciton coupling terms $J_1 - J_{11}$ are identified in Figure S7. Our sign convention uses that all transition dipole moments are oriented in the direction of the crystallographic c-axis.

$R_I(\text{\AA})$	$R_2(\text{\AA})$	$R_3(\text{\AA})$	$R_4(\text{\AA})$	$J_D (\mathrm{cm}^{-1})$	identifier
5.784	5.784	12.799	9.209	263.2	J_{I}
11.361	11.361	3.849	20.617	-218.9	J_2
8.046	14.902	7.312	17.265	-5.4	J_3
5.923	16.107	11.417	15.13	127.8	J_4
10.59	10.59	7.91	18.47	13.7	J_5
7.242	7.242	14.849	7.99	138.4	J_6
6.024	17.334	14	12.571	120.3	J_7
8.419	17.666	17.576	9.556	22.9	J_8
15.652	15.652	23.501	10.82	-11.9	J_9
7.056	6.822	8.866	14.021	172.4	J_{10}
6.252	15.23	13.249	11.69	106.9	J_{11}

The various exciton coupling energies J_1 to J_{11} are identified with the help of the crystal structure projections below (Figure S10):

Figure S10: Identification of exciton coupling terms J_1 to J_{11} viewed at different projections. (a) Intralayer couplings in layer 2 (b) Interlayer (J_5 to J_8) and intralayer (J_9) couplings between layers 1a and 1b (c) interlayer couplings between layers 1 and 2.

TDDFT prediction of the spectrum of isolated CyC

L	ayer 1	Layer 2	
Energy / cm ⁻¹	Oscillator strength	Energy / cm ⁻¹	Oscillator strength
22400	1.59	22080	1.62
34700	0.02	34340	0.01
38370	0.01	38170	0.01
38630	0.00	38380	0.00
41090	0.11	40800	0.09
42400	0.09	42160	0.10

Table S2: Cam-B3LYP/6-31G* TDDFT predictions of the absorption spectrum of an isolated CyC cation in chloroform.

DFT optimized coordinates for the translationally optimized unit cell, no symmetry

box: 15.825751 0.00 -1.606683 0.00 20.7468 0.00 0.00 0.00 15.6519 Kpoints: 2 2 2 basis: NGX= 108 NGY= 140 NGZ= 108 NGXF= 216 NGYF= 280 NGZF= 216 6 1.584647 6.736895 7.290021 6 14.241104 14.009904 6.755196 6 14.241103 17.110295 -1.070753 1.5846473.6365051.5037186.062622 6 15.115971 6 6.075231 14.322035 14.684177 6 7.969986

6	14.322034	16.436022	0.144036
6	1.503717	4.310777	13.901181
6	1.124381	4.715954	6.129960
6	14 701370	16 030845	7 915256
G	14 701270	16 000255	0 000206
0	14.701370	13.009333	0.009300
6	1.124381	5.65/446	13.955911
6	0.851093	4.082127	7.343507
6	14.974657	16.664672	6.701711
6	14.974657	14.455527	-1.124240
6	0.851094	6.291273	15.169457
6	0 951456	4 781347	8 553052
6	1/ 87/295	15 965452	5 492164
G	14 074205	15 154747	12 210115
0	14.8/4295	15.154/4/	13.318115
6	0.951455	5.592053	0.727102
6	1.317072	6.117038	8.514736
6	14.508678	14.629762	5.530481
6	14.508678	16.490437	13.356432
6	1.317073	4.256362	0.688786
6	1 528703	7 113729	9 634985
6	14 207040	12 622071	1 110232
0	14.297040	13.0330/1	4.410232
6	14.29/048	1/.48/128	12.236183
6	1.528703	3.259671	1.809035
6	1.913228	8.371568	8.851851
6	13.912523	12.375231	5.193365
6	13.912523	18.744968	13.019315
6	1 913228	2 001832	1 025902
6	2 183347	9 649867	9 3/108/
C	12 (42404	11 000022	J.J41004
0	13.642404	11.096932	4.704133
6	13.642404	20.023267	12.530083
6	2.183346	0.723533	1.515133
6	2.208328	9.998214	10.689400
6	13.617423	10.748585	3.355817
6	13.617422	20.371614	11.181767
6	2 208329	0 375185	2 863//9
C	2.200529	11 205077	2.003449
6	2.438520	11.295977	11.145864
6	13.387231	9.450822	2.899352
6	13.387231	0.922578	10.725303
6	2.438520	19.824222	3.319914
6	2.452717	11.678019	12.484060
6	13.373034	9.068781	1,561158
6	13 373035	1 304619	9 387108
6	2 452717	10 112100	1 659100
C	2.452717	19.442100	4.000109
6	2.226352	10.818069	13./32898
6	13.599399	9.928730	0.312318
6	13.599399	0.444669	8.138268
6	2.226352	20.302130	5.906948
6	2.369931	11.843030	14.838324
6	13.455820	8.903770	-0.793108
6	13 455819	1 469630	7 032843
e	10.10010	10 0771/0	,.0J204J 7 01007/
0	2.309932	19.277109	7.012374
6	2.30536/	11./06038	0.56563/
6	13.520384	9.040762	13.479580
6	13.520383	1.332638	5.653630
6	2.305368	19.414161	8.391587
6	2.432752	12.857699	1.356316
6	13 302000	7 889100	12 688900
G	12 202000	7.009100	1 0COOF1
0	13.392999	2.404300	4.002931
6	2.432751	18.262500	9.182267
6	2.633624	14.109116	0.767430
6	13.192127	6.637684	13.277787
6	13.192127	3.735716	5.451837
6	2.633623	17.011084	8.593381
6	2.724454	14.254622	15.031794
ĥ	13 101007	6 / 02177	-0 006570
C	10.10123/	0.4921//	
б	13.10129/	3.881222	6.8393/2
6	2.724454	16.865577	7.205844
6	2.594394	13.100034	14.269394
6	13.231357	7.646766	-0.224176

6	13.231358	2.726634	7.601773
6	2 594394	18 020166	6 443443
ć	2.004004	10.020100	0.450000
6	2.2/32/0	9.014491	6.452863
6	13.552481	11.732308	7.592354
6	13.552481	19.387891	-0.233597
6	2,273270	1.358908	14.278813
6	1 046785	9 769150	5 959357
C	14 770000	10 077640	0.005000
6	14.//8966	10.977649	8.085860
6	14.778966	20.142550	0.259910
6	1.046785	0.604249	13.785307
6	2 685149	6 645005	10 548308
6	13 140602	14 101705	3 106000
0	13.140002	14.101/95	5.490909
6	13.140602	1/.018404	11.322860
6	2.685149	3.728395	2.722358
6	0.214920	7.309934	10.416124
6	15 610831	13 436866	3 629093
ć	15.010001	17 (02224	11 455040
6	12.010831	1/.083334	11.455043
6	0.214920	3.063466	2.590174
6	3.280564	9.710935	13.895060
6	12.545188	11.035865	0.150157
6	12 545187	20 084334	7 976108
ć	2 200504	20.004334	C 0C0110
6	3.280564	0.002405	0.009110
6	0.796462	10.236752	13.753723
6	15.029289	10.510048	0.291493
6	15.029289	20.610151	8.117444
6	0 796462	0 136647	5 927774
C	0.790402	14 102460	11 00000
6	2.846689	14.103460	11.969806
6	12.979062	6.643340	2.075411
6	12.979062	3.730060	9.901361
6	2.846690	17.016740	4.143856
6	1 517001	1/ 627077	11 127717
0	1. J1/001	14.02/0//	11.437747
6	14.30/8/0	6.118923	2.60/469
6	14.307870	4.254477	10.433419
6	1.517881	16.492323	3.611797
6	7 013656	6 120229	13 308556
G	0 012005	14 626570	0 726660
0	0.012095	14.020370	0.730000
6	8.812095	16.493629	8.562611
6	7.013656	4.253170	5.482607
6	6.512410	5.315961	12,286259
6	9 313340	15 430838	1 758958
G	0 212240	15 600261	1.750550
0	9.313340	13.089301	9.584908
6	6.512410	5.057438	4.460309
6	7.442452	4.775879	11.390145
6	8.383299	15.970921	2.655072
6	8 383300	15 149279	10 481023
ć	7 442452	E E07E01	2 5 6 4 1 0 5
0	7.442452	5.59/521	3.364195
6	8.810892	5.027050	11.528540
6	7.014859	15.719750	2.516677
6	7.014858	15.400449	10.342627
6	8 810893	5 346350	3 702590
ć	0.010000	5.340330 E 021001	10 570200
6	9.292957	5.831091	12.570688
6	6.532794	14.915709	1.474529
6	6.532794	16.204490	9.300479
6	9.292957	4.542309	4.744738
6	0 300603	6 302003	12 /57120
0	0.300003	0.302003	13.437129
6	/.445148	14.364/96	0.588089
6	7.445147	16.755403	8.414039
6	8.380604	3.991397	5.631178
6	8,592531	7.249715	14.683244
6	7 733770	13 /07005	-0 630036
C	7.233220	17 (00114	-0.030020
ь	1.233221	1/.623114	1.18/924
6	8.592530	3.123685	6.857293
6	7.149393	7.479454	-0.502694
6	8.676358	13.267346	14.547911
6	8 676350	17 252052	6 721061
C	0.0/0300	1.002000	U. / ZI YOI
6	/.149393	2.893946	1.323256
6	6.670679	8.212054	0.580852
6	9.155073	12.534745	13.464364

6	9.155072	18.585454	5.638414
6	6 670679	2 161345	8 406803
G	7 420707	0 020672	1 512542
0	1.429707	0.920072	1.312343
6	8.395965	11.818126	12.532675
6	8.395965	19.302073	4.706725
6	7.429786	1.444727	9.338493
6	6.850218	9.619281	2.574670
6	8 975532	11 127510	11 470546
0	0.975552	10.000000	11.4/0540
6	8.9/5532	19.992680	3.644596
6	6.850219	0.754119	10.400621
6	7.525977	10.315123	3.580811
6	8.299775	10.431677	10.464406
6	8.299775	20.688522	2,638455
6	7 525976	0 058276	11 /06761
ć	0.021501	10 524720	2 700701
6	9.031591	10.524726	3./08353
6	6./94160	10.2220/3	10.2/6864
6	6.794160	0.151327	2.450915
6	9.031591	20.595473	11.594303
6	9.067537	11.286067	5.080388
6	6 758214	9 460733	8 964829
ć	0.750214	0.0100755	1 120070
6	6./58214	0.912667	1.1388/9
6	9.06/53/	19.834132	12.906338
6	10.133461	11.730120	5.849048
6	5.692290	9.016679	8.196169
6	5.692290	1.356721	0.370219
6	10 133460	19 390079	13 674998
6	0 961740	12 110010	10.071000
0	9.001/49	12.440040	7.027233
6	5.964002	8.305951	/.01/984
6	5.964003	2.067448	-0.807966
6	9.861748	18.679351	-0.798717
6	8.544069	12.717999	7.406541
6	7.281682	8.028800	6.638677
6	7 281683	2 344599	14 464627
6	9 544069	10 102200	_0 /10/10
C	0.044000	10.402200	-0.419410
6	7.460089	12.2/33/3	6.643392
6	8.365662	8.473426	7.401825
6	8.365662	1.899973	-0.424126
6	7.460090	18.846826	14.469342
6	7.757783	11.545833	5.492611
6	8.067967	9,200966	8,552606
6	8 067968	1 172434	0 726656
6	7 757703	10 57/266	12 210562
0	1.131103	19.374300	13.310302
6	4.890228	6.363339	14.590015
6	10.935523	14.181441	-0.544797
6	10.935524	16.938758	7.281152
6	4.890227	3.808041	6.764065
6	4.673062	5.479302	-0.017204
6	11.152689	15.267497	14.062421
6	11 152688	15 852702	6 236471
G	1 672062	1 001000	7 000746
0	4.0/3003	4.094090	1.000/40
6	9.330288	8.551484	14.323513
6	6.495462	12.195315	-0.278296
6	6.495462	18.924884	7.547654
6	9.330289	1.821916	6.497564
6	9 373993	6 448106	0 096991
6	6 451758	1/ 20860/	13 0/8226
ć	0.451750	16 001505	13.940220
0	0.431739	10.021303	0.122270
6	9.3/3993	3.925293	7.922942
6	9.573727	11.439338	2.645119
6	6.252024	9.307461	11.400098
6	6.252025	1.065939	3.574148
6	9.573726	19.680861	10.471069
6	9 828120	9 211277	3 842937
6	5 007601	2.4114// 11 525500	10 2022937
0	J.99/031	11.000022	10.202280
6	5.997631	19.584677	2.3/6330
6	9.828120	1.162122	11.668888
6	5.419685	11.080948	4.706010
6	10.406066	9.665851	9.339207

6	10.406067	0.707548	1.513257
6	5.419684	20.039251	12.531961
6	4 901707	12 279261	3 020303
0	4.901707	12.279201	10 104015
6	10.924043	8.46/539	10.124915
6	10.924044	1.905861	2.298965
6	4.901708	18.840938	11.746252
1	1,706782	6.553719	5.123482
1	1/ 118969	1/ 103080	8 92173/
1	14 110000	16 007110	1 005704
1	14.118968	10.92/119	1.095784
1	1.706782	3.819681	12.949432
1	1.031008	4.154954	5.200208
1	14.794742	16.591846	8.845010
1	14.794743	14.528353	1.019060
1	1 031008	6 218445	13 026158
1	0 557107	2 022461	7 255416
1	0.557107	3.033401	7.333410
T	15.268644	1/./13339	6.689800
1	15.268645	13.406860	-1.136150
1	0.557107	7.339939	15.181366
1	0.784951	4.260663	9.495486
1	15 040800	16 486137	4 549731
1	15 040900	14 634062	12 275601
1	13.040000	14.034002	12.373001
1	0.784951	6.112/3/	1.669536
1	2.385308	10.443852	8.619807
1	13.440443	10.302948	5.425411
1	13.440443	0.070452	13.251361
1	2.385308	-0.070452	0.793857
1	2 025954	9 220974	11 427446
1	13 700700	11 525025	2 617771
1	13.799790	11.JZJOZJ	2.01///1
1	13./99/9/	19.594374	10.443721
T	2.025954	1.152426	3.601495
1	2.583472	12.069509	10.388961
1	13.242279	8.677290	3.656257
1	13.242280	1.696110	11.482207
1	2.583472	19.050690	2.563011
1	2.181449	10.732700	1.040639
1	13 644302	10 014100	13 004578
1	13 644303	0 359300	5 178628
1	2 101440	0.333300	0.00020
1	2.181448	20.387499	8.866589
1	2.375519	12.767982	2.440739
1	13.450233	7.978817	11.604479
1	13.450232	2.394583	3.778528
1	2.375519	18.352217	10.266689
1	2.718644	15.004601	1.381240
1	13 107106	5 742198	12 663976
1	13 107106	4 631202	1 030026
1	13.10/100	4.031202	4.030020
1	2./18645	16.115598	9.207190
1	2.870528	15.237447	14.585947
1	12.955222	5.509353	-0.540730
1	12.955222	4.864047	7.285220
1	2.870529	15.882752	6.759997
1	2.726810	8,433561	5,640364
1	13 098941	12 313239	8 404853
1	12 000041	10 006060	0.570002
1	13.090941	10.000900	0.576905
T	2.726810	1.939838	13.466315
1	3.030875	9.718349	6.817231
1	12.794876	11.028450	7.227985
1	12.794876	20.091750	-0.597965
1	3.030875	0.655050	14.643182
1	1.335867	10.400149	5.110550
1	14 489881	10 346651	8 934667
⊥ 1	1/ /00000	10.3400J1	1 100717
1	1 205055	0.026/49	1.100/1/
1	1.335867	-0.026749	12.936500
1	0.631429	10.407790	6.749529
1	15.194322	10.339010	7.295689
1	15.194322	0.034389	-0.530262
1	0.631429	-0.034390	14.575479
1	0.267188	9.077666	5.618494
1	15.558563	11.669133	8,426723
-			

1	15.558563	19.451066	0.600773
1	0.267187	1.295734	13.444444
1	3,636450	6.616342	9,999782
1	12 189301	14 130458	4 045434
1	12.10000	16 000742	11 071204
1	12.109300	10.909/42	11.0/1304
T	3.636450	3./5/058	2.1/3832
1	2.479841	5.631763	10.919987
1	13.345909	15.115037	3.125231
1	13.345910	16.005163	10.951181
1	2.479841	4.741637	3.094037
1	2 811328	7 309643	11 413695
1	12 01//22	12 427167	2 621522
1	13.014423	13.43/13/	2.031322
T	13.014424	17.683043	10.45/4/3
1	2.811327	3.063757	3.587745
1	15.759039	6.363911	9.287444
1	0.066712	14.382889	4.757773
1	0.066712	16.737310	12.583724
1	15 759039	4 009488	1 461494
1	15 220010	7 601600	9 140640
1	13.220919	7.001009	0.140040
1	0.604831	13.145110	5.904577
1	0.604831	17.975089	13.730526
1	15.220920	2.771711	0.314690
1	0.315912	8.072683	11.199133
1	15.509840	12.674117	2.846084
1	15.509840	18.446083	10.672034
1	0 315011	2 300717	3 373183
1	4 207620	2.300717	12 024061
1	4.29/639	10.121927	13.834861
T	11.528112	10.6248/2	0.21035/
1	11.528112	20.495328	8.036306
1	4.297639	0.251472	6.008911
1	3.179383	8.933691	13.126582
1	12.646368	11.813109	0.918635
1	12 646368	19 307090	8 744585
1	2 170202	1 420700	E 200C22
1	3.1/9383	1.439709	5.300632
T	3.153825	9.241946	14.8/9812
1	12.671926	11.504854	-0.834594
1	12.671925	19.615346	6.991356
1	3.153826	1.131453	7.053861
1	0.612209	9.763532	14.727198
1	15 213541	10 983267	-0 681981
1	15 012541	20 126022	7 142060
1	13.213341	20.130932	7.143900
1	0.612210	0.609867	6.901248
1	0.657209	9.473339	12.977326
1	15.168542	11.273460	1.067891
1	15.168543	19.846739	8.893841
1	0.657208	0.900061	5.151376
1	0.046154	11.022726	13.592024
1	-0 046154	9 724074	2 059876
1	-0.046155	0 640326	0 005076
1	-0.040155	0.049520	5.000020
1	0.046154	20.09/4/3	5./660/4
1	3.501079	13.798730	11.141003
1	12.324672	6.948069	2.904214
1	12.324672	3.425331	10.730165
1	3,501079	17.321469	3,315053
1	3 372862	14 881263	12 538484
1	10 452002	E 0(EE27	1 50(724
1	10 450000	J.00333/	1.000/34
1	12.452889	4.50/863	9.332684
1	3.372862	16.238937	4.712534
1	1.673443	15.591171	10.938110
1	14.152309	5.155629	3.107108
1	14.152308	5.217771	10.933058
1	1.673442	15.529029	3.112159
- 1	1 806030	1/ 77/576	12 250170
⊥ 1	15 010000	±1.//4J/0	1 70(000
1	T2.0T0370	5.912223	1.100038
1	15.018920	4.401176	9.611988
1	0.806831	16.345623	4.433228
1	1.071913	13.941451	10.709556
1	14.753838	6.805348	3.335661

1	14.753838	3.568051	11.161610
1	1.071914	17.178748	2.883606
1	5.452215	5.085270	12.181296
1	10.373535	15.661529	1.863921
1	10 373534	15 458670	9 689871
1	E 452216	5 200120	1 255246
1	3.432210	J.200129	4.333340
1	/.085586	4.129840	10.586941
1	8.740165	16.616960	3.458277
1	8.740166	14.503239	11.284226
1	7.085586	6.243560	2.760990
1	9.517787	4.578084	10.831524
1	6.307964	16.168715	3.213692
1	6.307965	14,951484	11.039642
1	9 517786	5 795316	3 005575
1	10 364711	5 990430	12 691200
1	5 461040	14 756370	1 25/010
1	5.401040	16 262020	1.334010
1	5.461040	16.363829	9.1/9968
1	10.364/12	4.382970	4.865250
1	5.589979	8.214099	0.742605
1	10.235772	12.532701	13.302613
1	10.235772	18.587498	5.476662
1	5.589979	2.159301	8.568554
1	8.513296	8.937224	1.410420
1	7.312455	11.809574	12,634798
1	7 312455	19 310625	4 808848
1	8 513296	1 /36175	9 236370
1	5 760406	0 502722	2 620701
1	10 0(5255	9.392722	11 406426
1	10.065255	11.154076	11.406436
1	10.065255	19.966123	3.580486
1	5.760496	0.780677	10.464732
1	11.160320	11.515353	5.552006
1	4.665432	9.231446	8.493210
1	4.665431	1.141953	0.667260
1	11.160319	19.604846	13.377956
1	10.682144	12.776057	7.663466
1	5 143607	7 970743	6 381752
1	5 143607	2 402657	14 207701
1	10 682144	18 3//1/2	-0 162484
1	0 257401	12 207000	0.102404
1	0.337491	13.20/099	0.317742
1	7.468260	7.458900	5./2/4/6
1	7.468260	2.914499	13.553426
1	8.357491	17.832300	0.491791
1	6.435925	12.477742	6.954997
1	9.389826	8.269058	7.090220
1	9.389826	2.104342	-0.735730
1	6.435924	18.642457	14.780947
1	4.411145	6.304149	13.637514
1	11,414606	14,442651	0.407702
1	11 414605	16 677548	8 233653
1	1 111116	1 069250	5 811564
1	1 112057	7 505530	14 027451
1	4.442937	12 241261	14.92/431
1	11.382/94	13.241261	-0.882233
1	11.382/95	1/.8/8939	6.943/1/
1	4.442956	2.867862	7.101500
1	5.132096	5.762064	0.939609
1	10.693655	14.984736	13.105607
1	10.693655	16.135463	5.279658
1	5.132095	4.611336	8.765560
1	5.099305	4.523289	-0.344932
1	10.726446	16.223511	14.390150
1	10 726445	14 896688	6 564199
- 1	5 000205	5 850111	7 401010
⊥ 1	3 500750	5 350020	0 150000
⊥ 1	10 00000	15 207020	12 004410
1	10,000000	15.30/939	13.094410
1	12.226992	15./32260	6.068467
1	3.598759	5.014539	7.976749
1	8.785554	9.125499	13.563226
1	7.040196	11.621300	0.481992

1	7.040196	19.498899	8.307942
1	8.785555	1.247901	5.737276
1	10.327273	8.313265	13,926478
1	5 / 98/78	12 /3353/	0 119730
1	5.400470	10 606665	7 044600
1	3.490479	10.000000	7.944690
1	10.32/2/2	2.060134	6.100528
1	9.463549	9.195560	-0.449084
1	6.362202	11.551240	14.494302
1	6.362203	19.568960	6.668352
1	9.463549	1.177839	7.376866
1	10.345082	6.141223	-0.314495
1	5 480669	14 605576	1/ 359712
1	5.400000	16 514622	6 522761
1	5.480669	10.514623	0.533/01
T	10.345082	4.2321/6	/.511455
1	8.826757	5.543086	0.393757
1	6.998993	15.203713	13.651460
1	6.998994	15.916486	5.825510
1	8.826757	4.830314	8.219706
1	9 548381	7 059456	0 992969
1	6 277360	12 607244	13 052240
1	0.277309	17 422056	13.032240
1	6.2//369	17.432836	5.226298
1	9.548382	3.313944	8.818920
1	9.021114	12.388095	2.605485
1	6.804637	8.358705	11.439731
1	6.804637	2.014695	3.613781
1	9 021113	18 732104	10 431435
1	0 101100	10 047016	1 665439
1	2.494400	10.94/010	10 000400
1	6.331343	9.798983	12.3/9//8
1	6.331343	0.574416	4.553828
1	9.494407	20.172383	9.491388
1	10.632641	11.661014	2.836373
1	5.193109	9.085786	11.208843
1	5.193110	1,287614	3.382893
1	10 632641	10 /50185	10 662323
1	10.032041	19.459105	1 242122
1	10.829660	9.408392	4.242132
1	4.996091	11.338408	9.803085
1	4.996091	19.781791	1.977135
1	10.829659	0.965008	12.068082
1	9.944558	8.756840	2.849918
1	5.881193	11,989958	11.195299
1	5 881193	19 130241	3 369349
1	0 011550	1 616550	10 675960
1	9.944559	1.010559	10.073009
1	9.348692	8.4//62/	4.500982
1	6.477058	12.269172	9.544234
1	6.477059	18.851027	1.718284
1	9.348693	1.895773	12.326932
1	5.185767	11.187177	5.771453
1	10.639983	9.559623	8.273764
1	10 639984	0 813777	0 447814
1	E 10E7C7	10 022022	12 507402
1	5.105/07	19.955022	13.397403
T	4.944972	10.156503	4.359938
1	10.880778	10.590297	9.685279
1	10.880778	20.529903	1.859329
1	4.944973	0.216897	12.185888
1	5 041338	12 140801	2 840199
1	10 784413	8 605998	11 205018
1	10.704413	1 7 7 4 0 0	2 270000
⊥ 1	LU. /04412	10 070200	10 666140
1	5.041338	T8.8/838	10.666149
T	5.407287	13.202565	4.232040
1	10.418463	7.544235	9.813178
1	10.418462	2.829165	1.987227
1	5.407288	17.917635	12.057990
1	3.834144	12.401066	4.129651
1	11 991606	8 345733	9 915567
⊥ 1	11 001007	0.010/00	2 000/17
1	TT.22T00/	2.02/00/	2.00901/
1	3.834144	10./19133	11.955600
7	1.952644	8.075350	7.529175
7	13.873107	12.671449	6.516042

7	13.873107	18.448751	-1.309908
/	1.952644	2.298049	15.355126
7	2.0053/4	12.963460	1 175017
7	13.160377	7.783340	1.1/391/
7	2 665275	2.390000	5 042250
7	2.003373	6 702051	14 220044
7	0.511240	12 0620/0	_0 204026
7	9.514505	17 157250	7 541124
7	6 311246	3 589549	6 504094
7	6 868458	10 945564	4 583805
7	8 957293	9 801235	9 461412
7	8 957293	0 572165	1 635462
7	6 868458	20 174635	12 409756
, 8	3.134100	8.101436	1.313019
8	12.691651	12.645364	12.732199
8	12.691651	18.474835	4.906248
8	3.134101	2.271964	9.138968
8	3.943847	7.450154	3.468108
8	11.881904	13.296646	10.577109
8	11.881903	17.823553	2.751159
8	3.943847	2.923246	11.294059
8	3.044673	9.641609	3.132158
8	12.781078	11.105190	10.913059
8	12.781078	20.015009	3.087109
8	3.044673	0.731790	10.958108
8	1.595965	7.745427	3.112354
8	14.229786	13.001372	10.932863
8	14.229785	18.118827	3.106913
8	1.595965	2.627972	10.938304
8	3.848051	11.842453	7.506112
8	11.977699	8.904346	6.539106
8	11.977699	1.469054	14.365055
8	3.848052	19.277746	-0.319838
8	3.256412	13.778926	6.237359
8	12.569339	6.96/8/3	/.80/858
8	12.569339	3.405527	-0.018092
8	3.230412	1/.3412/3	14.003310
0	4.400000	14.0119/0	8.293545 5.751672
0	11.300910	0.734029	12 577622
o Q	1 156831	17 108229	0 167595
8	2 162387	13 333257	8 318426
8	13 663364	7 413543	5 726790
8	13 663365	2 959857	13 552741
8	2 162388	17 786942	0 492476
17	2 931375	8 232254	2 755284
 17	12.894376	12.514545	11.289933
17	12.894375	18.605654	3.463983
17	2.931375	2.141146	10.581234
17	3.428707	13.248478	7.590025
17	12.397044	7.498321	6.455192
17	12.397043	2.875078	14.281142
17	3.428708	17.871721	-0.235925

References

- [1] F. D. Bloss *Mineralogical Society of America: Monograph Series* **1999**, *No.* 5.
- [2] G. M. Sheldrick *Acta Crystallographica Section C-Structural Chemistry* **2015**, *71*, 3.
- [3] A. L. Spek Acta Crystallographica Section D-Biological Crystallography **2009**, 65, 148.
- [4] J. C. de Mello, H. F. Wittmann, R. H. Friend *Advanced Materials* **1997**, *9*, 230.
- [5] V. Czikklely, H. D. Forsterling, H. Kuhn *Chemical Physics Letters* **1970**, *6*, 207.

[6] H. Zhang, B. Niesen, E. Hack, S. Jenatsch, L. Wang, A. C. Veron, M. Makha, R. Schneider, Y. Arroyo, R. Hany, F. Nueesch *Organic Electronics* **2016**, *30*, 191.

[7] S. Jenatsch, R. Hany, A. C. Veron, M. Neukom, S. Zufle, A. Borgschulte, B. Ruhstaller, F. Nuesch *Journal of Physical Chemistry C* **2014**, *118*, 17036.

[8] K. Saito, K. Ikegami, S. i. Kuroda, Y. Tabe, M. Sugi *Journal of Applied Physics* **1992**, *71*, 1401.

[9] A. Gil, D. Möbius, I. Sández, A. Suárez *Langmuir : the ACS journal of surfaces and colloids* **2003**, *19*, 6430.

[10] H. Yao, R. Kawabata, H. Ikeda, N. Kitamura *Physical Chemistry Chemical Physics* 1999, 1, 4629.