Supplementary Information

Quantitative analysis of 14N Quadrupolar Couplings Using Proton Detected 14N Solid-State NMR

James A. Jarvis^a, Maria Concistre^b, Ibraheem M. Haies^{b,c}, Richard W. Bounds^b, Ilya Kuprov^b, Marina Carravetta^b, Philip T.F. Williamson^{a*}

> ^aCentre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, United Kingdom.

^b School of Chemistry, University of Southampton, SO17 1BJ, Southampton, United Kingdom.

^c Department of Chemistry, College of Science, University of Mosul, Mosul, Iraq.

*Corresponding author: <u>P.T.Williamson@soton.ac.uk</u>

Supplementary Figure S1. Plot of δ_{CS}^{iso} as a function of C_Q and η at 14.1T. The δ_{CS}^{iso} is plotted in ppm as a function of C_Q and η , calculated from Equation 1. Plot is for a magnetic field of 14.1T. Dotted and dashed lines indicate the experimentally determined and calculated values for the δ_{CS}^{iso} , respectively, of $-NH_3^+$, (purple), N ϵ (blue) and N δ (red) sites in His.HCl.H₂O.

Supplementary Figure S2. Plot of δ_{CS}^{iso} as a function of C_Q and η at 20.T. The δ_{CS}^{iso} is plotted in ppm as a function of C_Q and η , calculated from Equation 1. Dashed lines indicate the experimentally determined values for the δ_{CS}^{iso} of the amide nitrogen in NAV.

Supplementary Figure S3. Simulations of 2D ¹H/¹⁴N correlation spectrum of NAV showing influence of relative orientations (α_Q^{PM} , β_Q^{PM} , 0) of the quadrupolar interaction and the ¹⁴N-¹H dipolar coupling tensors (C_Q =3.2 MHz, η =0.32, CSA omitted) on lineshape (A, ¹H x-axis 8 to 10 ppm, ¹⁴N y-axis 250 to 400ppm) and the corresponding skyline projections of the ¹⁴N dimenion. (B, normalized to maximum intensity, and plotted between 250 and 400 ppm). Spectra were simulated for a field of 19.96T with a spinning speed of 78 kHz. Simulations were performed with a rotor grid rank of 55 and summed over 1202 powder points and processed with 200 Hz linebroadening in both dimensions.

Supplementary Figure S4. Simulations of 2D ¹H/¹⁴N correlation spectrum of NAV showing influence of relative orientations (α_Q^{PM} , β_Q^{PM} , 0) of the quadrupolar interaction and the ¹⁴N-¹H dipolar coupling tensors (C_Q=3.2 MHz, η =0.32, with CSA included as described in Table 1) on lineshape (A, ¹H x-axis 8 to 10 ppm, ¹⁴N y-axis 250 to 400ppm) and the corresponding skyline projections of the ¹⁴N dimension. (B, normalized to maximum intensity, and plotted between 250 and 400 ppm). Spectra were simulated for a field of 19.96T with a spinning speed of 78 kHz. Simulations were performed with a rotor grid rank of 55 and summed over 1202 powder points and processed with 200 Hz linebroadening in both dimensions.