Supplementary Information for

"A density functional theory study of the hydrogenation and reduction of the thio-spinel Fe_3S_4 {111} surface"

Alberto Roldan^{1,2} and Nora H. de Leeuw^{1,2}

¹ School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK ² Department of Earth Sciences, Utrecht University, Princetonplein 8A, 3584 CC, Utrecht, The Netherlands

This file contains a compilation of figures and tables that complement the results and discussion of the main paper.

Content:

•

• PRISTINE SURFACE PROPERTIES

Schematic Representation of Fe₃S₄

Hydrogen on Fe₃S₄{111} Schematic Representation of H₂ evolution on Fe₃S₄{111} H₂ Free Energy H sequestration in Fe₃S₄{111}

Pristine Surface Properties

Schematic Representation of Fe₃S₄

Figure S1. Side (right) and top view (left) of Fe_3S_4 surfaces. Different types of Fe are exposed in the surface with a lower coordination number than in the bulk, labelled as (Fe_A) and (Fe_B) from the spinel formulation $Fe_A(Fe_B)_2S_4$. Grey balls and sticks denote Fe and dark-yellow the S atoms.

 $Fe_3S_4\{001\}$

Hydrogen on Fe₃S₄{111}

Figure S2. Hydrogen binding energy (E_B) as a function of the bare S p-band centre. A linear trend was extrapolated from the calculated values on Fe₃S₄{111} in black solid dots: E_B = 1.214 + 0.528· E_{p-band} , R²=0.94.

Figure S3. Side view of a charge density difference flux representation of two atomic H adsorbed on top of S sites in the $Fe_3S_4\{111\}$ surface. Grey denotes Fe, dark-yellow the S atoms and white H atoms (S–H spheres are magnified). Red clouds indicate the charge density depletion and blue its appearance.

Figure S4. Surface sulfur main charge difference as a function of H coverage (θ_H) on Fe₃S₄{111} and Fe₃S₄{001} surfaces, solid circles and red squares respectively. Solid line represents the regression of the solid points: Δq_s = -0.112 + 1.93 $\cdot \theta_H$ + 2.89 $\cdot \theta_H^2$ + 2.00 $\cdot \theta_H^3$, R=0.99.

Schematic Representation of H_2 evolution on $Fe_3S_4\{111\}$

Figure S5. Top-view schematic representations of the H_2 evolution structures on $Fe_3S_4\{111\}$. Note that the final state of the associative processes is the bare surface and an isolated H_2 molecule. Grey balls and sticks denote Fe cations, dark-yellow S anions and white H atoms.

Molecular Desorption				
Initial State	TS	Final	State	(before
		desorption)		
System 1				

Associative Desorption Initial State System 2

System 3

System 4

System 5

System 6

System 7

H₂ Free Energy

Figure S6. Experiment (Ref. 69 in the main paper) (solid-black line) and computed (bluedashed line) free energy (G) for H_2 molecule from 250 to 700 K at 1 atm of pressure. The average relative error is 0.09 %.

H sequestration in $Fe_3S_4\{111\}$

Figure S7. Side view representation of (A) the initial and (B) the optimized structure of a hydrogen atom incorporated into the $Fe_3S_4\{111\}$ structure at $\theta_H=1$ ML. Grey balls and sticks denote Fe cations, dark-yellow S anions and white H atoms.

